Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (4) : 67-70     DOI: 10.6046/gtzyyg.2010.04.15
Technology Application |

The Relationship Between Urban Heat Island and Land Use/Cover Changes in Guangzhou City

SUN Qin-qin 1,2, WU Zhi-feng 2,3, TAN Jian-jun 2
1.College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China; 2.Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 3.Guangdong Institute of Eco-environment and Soil Sciences, Guangzhou 510650, China
Download: PDF(669 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 In this paper, the land surface temperature (LST) was retrieved from Landsat TM image using the Mono-Window algorithm. To study the relationship between LST and different land use classes (LUC), the authors used several indices, which included Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Normalized Difference Build-up Index (NDBI), and Normalized Difference Barren Index (NDBaI). It is found that the correlation between NDVI and LST is negative when NDVI is limited in range, and that there exist positive correlations between NDBI, NDBaI, MNDWI and LST. The multiple linear regression equation was established between LST, DEM and the above indices. Both qualitative and quantitative analytical results show that LUC can influence urban temperature. Therefore, with appropriate land use planning, the urban heat island (UHI) could be mitigated.

Keywords Arc/Info      Remote sensing data      Regional stability estimation      Spatial database     
: 

 

 
  TP 79

 
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
SUN Qin-Qin, WU Zhi-Feng, TAN Jian-Jun.
The Relationship Between Urban Heat Island and Land Use/Cover Changes in Guangzhou City[J]. REMOTE SENSING FOR LAND & RESOURCES,2010, 22(4): 67-70.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.04.15     OR     https://www.gtzyyg.com/EN/Y2010/V22/I4/67

[1]Goetz S J. Multi-Sensor Analysis of NDVI, Surface Temperature and Biophysical Variables at a Mixed Grassland Site [J]. International Journal of Remote Sensing, 1997, 18(1):71-94.

[2]Weng Q. A Remote Sensing-GIS Evaluation of Urban Expansion and Its Impact on Surface Temperature in the Zhujiang Delta, China[J]. International Journal of Remote Sensing, 2001, 22:1999-2014.

[3]Chen X, Zhao H, Li P, et al. Remote Sensing Image-Based Analysis of the Relationship Between Urban Heat Island and Land Use/Cover Changes [J]. Remote Sensing of Environment, 2006, 104:133-146.

[4]历华, 曾永年, 柳钦火. 基于遥感的长沙市城市热岛与土地利用/覆盖变化研究[J]. 国土资源遥感, 2008(4):47-52.

[5]刘宇, 匡耀求, 吴志峰, 等. 不同土地利用类型对城市地表温度的影响——以广东东莞为例[J]. 地理科学, 2006, 26(5):597-601.

[6]Weng Q, Lu D, Schubring J. Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies[J]. Remote Sensing of Environment, 2004, 89:467-483.

[7]岳文泽, 徐建华, 徐丽华. 基于遥感影像的城市土地利用生态环境效应研究[J]. 生态学报, 2006, 26(5):1450-1460.

[8]徐涵秋. 城市不透水面与相关城市生态要素关系的定量分析[J].生态学报,2009, 29(5):2456-2462.

[9]历华, 柳钦火, 邹杰. 基于MODIS数据的长株潭地区NDBI和NDVI与地表温度的关系研究[J]. 地理科学, 2009,29(2):262-267.

[10]钱乐祥, 丁圣彦. 珠江三角洲土地覆盖变化对地表温度的影响[J]. 地理学报,2005,60(5):761-770.

[11]Sobrino J A, Jiménez-Munoz J C, Paolini L. Land Surface Temperature Retrieval from Landsat TM 5 [J]. Remote Sensing of Environment, 2004, 90 (4):434-440.

[12]Zhang J, Wang Y, Li Y. A C++ Program for Retrieving Land Surface Temperature from the Data of Landsat TM/ETM+ Band6 [J]. Computers and Geosciences, 2006, 32 (10):1796 -1805.

[13]覃志豪, Zhang M, Karnieli A, 等. 用陆地卫星TM6 数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4):456-466.

[14]Purevdorj T S, Tateishi R, Ishiyama T, et al. Relationships Between Percent Vegetation Cover and Vegetation Indices[J]. International Journal of Remote Sensing, 1998, 19(18):3519-3535.

[15]Zha Y, Gao J, Ni S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery [J]. International Journal of Remote Sensing, 2003, 24(3):583-594.

[16]徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595.

[17]Zhao H, Chen X. Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM/ETM+[J]. Geoscience and Remote Sensing Symposium, 2005, 3(25-29):1666-1668.

[18]Carson T N, Gillies R R, Perry E M. A Method to Make Use of Thermal Infrared Temperature and NDVI Measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover [J]. Remote Sensing Reviews, 1994(9):161-173.

[1] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[2] Ling CHEN, Jia JIA, Haiqing WANG. An overview of applying high resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1): 1-7.
[3] Wei ZHANG, Jianwei QI, Ying CHEN, Xu HAN. A study of block adjustment of domestic multi-source high resolution satellite images[J]. Remote Sensing for Land & Resources, 2019, 31(1): 125-132.
[4] Jiasi YI, Xiangyun HU. Extracting impervious surfaces from multi-source remote sensing data based on Grabcut[J]. Remote Sensing for Land & Resources, 2018, 30(3): 174-180.
[5] Yangming WANG, Jingfa ZHANG, Zhirong LIU, Xuhui SHEN. Active faults interpretation of Shannan area in Tibet based on multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 230-237.
[6] Xiaogang HOU, Zhaojun ZHENG, Shuai LI, Xuehua CHEN, Yu CUI. Generation of daily cloudless snow cover product in the past 15 years in Xinjiang and accuracy validation[J]. Remote Sensing for Land & Resources, 2018, 30(2): 214-222.
[7] Wenquan DONG, Jihua MENG. Review of spatiotemporal fusion model of remote sensing data[J]. Remote Sensing for Land & Resources, 2018, 30(2): 1-11.
[8] DAI Jingjing, WANG Denghong, WU Yanan. Investigation of rare metal mine using high resolution remote sensing data: A case study of No. 414 rare metal mine in Yichun, Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 104-110.
[9] ZHANG Yanbin, AN Nan, LIU Peiyan, JIA Kun, YAO Yunjun. Typical reclamation vegetation classification based on phenological feature parameters for coalfields in Shanxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 170-177.
[10] CHENG Tao. Exploring management and service mode for remote sensing data in big data era[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 202-206.
[11] DONG Lina, ZHANG Wei, WANG Xue, CHEN Ling, YANG Jinzhong, MO Zifen. Remote sensing geological interpretation and uranium prospecting perspective analysis of Shengyuan volcanic basin in Jiangxi Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 102-108.
[12] LIU Xinxing, CHEN Jianping, ZENG Min, DAI Jingjing, PEI Yingru, REN Mengyi, WANG Na. Geological structural interpretation of Qiangduo area in Tibet based on multi-source remote sensing data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 154-160.
[13] CHEN Ling, LIANG Shuneng, ZHOU Yan, GAN Fuping, WEI Hongyan. Potential of applying domestic high-resolution remote sensing data to geological survey in high altitudes[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 140-145.
[14] XU Xu, GAO Ang, ZHU Pingping, ZHOU Zengke. Valuation of ecosystem services based on multi-source remote sensing data:A case study of Hebei Province[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 180-186.
[15] QIAN Jianping, ZHANG Yuan, ZHAO Xiaoxing, ZHAO Shaojie, LI Chengli. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 109-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech