Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 125-131     DOI: 10.6046/gtzyyg.2012.02.23
Technology Application |
The Detection and Analysis of Land Use Change in the Laoha River Basin During the Past Four Decades
FANG Xiu-qin1, REN Li-liang2, LI Qiong-fang2
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China;
2. State Key Laboratory of Hydrology, Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
Download: PDF(3744 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  On the basis of the multiple remote sensing images of Landsat MSS, TM and ETM+ and other auxiliary data, two classification approaches of decision tree and support vector machine were applied to land use/cover classifications in the semiarid Laoha river basin over the past 40 years since the 1970s. The land use changes and their spatial distribution were analyzed quantitatively and mapped with GIS techniques. The results show that land use/cover maps in 1976, 1989, 1999 and 2007 could be generated based on the implementation of support vector machine classification with satisfying results. The analysis shows that land use has changed very obviously in the study area over the last 40 years. The areas of water body and grassland have decreased while rural and urban areas increased persistently. The cultivated land area has increased substantially. Forest land and fallow land have changed in fluctuation with a decrease on the whole. It’s obvious that the most remarkable change has been the interconversion of lands for agriculture (cultivated land), for forestry (forest land), and for animal husbandry (grassland). Moreover, the spatial distribution of the conversion was greatly different in different periods. An analysis of the intensity of land use changes indicates that the highest annual rate of land use change has been increased gradually and the annual intensity has been spatially heterogeneous. Moreover, the suburbs surrounding Chifeng city always have changed intensively during the past decades, suggesting the persistent urbanization of Chifeng city.
Keywords ETM+      alteration      information extraction      SVM     
:  TP 79  
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Nan-nan
ZHOU Ke-fa
CHEN Xi
LI Hong
Cite this article:   
ZHANG Nan-nan,ZHOU Ke-fa,CHEN Xi, et al. The Detection and Analysis of Land Use Change in the Laoha River Basin During the Past Four Decades[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 125-131.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.23     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/125
[1] 于兴修,杨桂山,王瑶.土地利用/覆被变化的环境效应研究进展与动向[J].地理科学,2004,24(5):627-633.
[2] 李天宏,韩鹏.厦门市土地利用/覆盖动态变化的遥感检测与分析[J].地理科学,2001,21(6):537-543.
[3] Alberti M,Weeks R,Coe S,et al.Urban Land Cover Change Analysis in Central Puget Sound[J].Photogrammetric Engineering & Remote Sensing,2004,70(9):1043-1052.
[4] Goetz S J,Varlyguin D,Smith A J,et al.Application of Multitemporal Landsat Data to Map and Monitor Land Cover and Land Use Change in the Chesapeake Bay Watershed[C]//Smits P C,Bruzzone L.Proceedings of the Second International Workshop on the Analysis of Multi-temporal Remote Sensing Images.Singapore:World Scientific Publishing Co,2004.
[5] Yang X J.Satellite Monitoring of Urban Spatial Growth in the Atlanta Metropolitan Area[J].Photogrammetric Engineering & Remote Sensing,2002,68(7):725-734.
[6] Knorn J,Rabe A,Radeloff V C,et al.Land Cover Mapping of Large Areas Using Chain Classification of Neighboring Landsat Satellite Images[J].Remote Sens Environ,2009,113(3):957-964.
[7] 方秀琴,任立良.西辽河的老哈河流域土地利用遥感动态监测[J].地球信息科学学报,2009,11(1):125-131.
[8] Elvidge C D,Sutton P C,Wagner T W.Urbanization [C]//Gutman G,Janetos A,Justice C,et al.Land Change Science:Observing, Monitoring,and Understanding Trajectories of Change on the Earth’s Surface.Dordrecht,Netherlands:Kluwer Academic Publishers:315-328.
[9] 刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412.
[10] Hanson M C,Dubayah R,DeFries R S.Classification Trees:an Alternative to Traditional Land Cover Classifiers[J].Int J Remote Sens,1996,17(5):1075-1081.
[11] Friedl M A,McIver D K,Hodges J C F,et al.Global Land CoverMapping from MODIS:Algorithms and Early Results[J].Remote Sens Environ,2002,83(1/2):287-302.
[12] Joy S M,Reich R M,Reynolds R T.A Non-parametric,Supervised Classification of Vegetation Types on the Kaibab National Forest Using Decision Trees[J].Int J Remote Sens,2003,24(9):1835-1852.
[13] Sesnie S E,Gessler P E,Finegan B,et al.Integrating Landsat TM and SRTM-DEM Derived Variables with Decision Trees for Habitat Classification and Change Detection in Complex Neotropical Environments[J].Remote Sens Environ,2008,112(5):2145-2159.
[14] 赵萍,傅云飞,郑刘根,等.基于分类回归树分析的遥感影像土地利用/覆被分类研究[J].遥感学报,2005,9(6):708-716.
[15] 张友静,高云霄,黄浩,等.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196.
[16] 陈艳华,张万昌.地理信息系统支持下的山区遥感影像决策树分类[J].国土资源遥感,2006(1):69-74
[17] Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer Verlag,1995.
[18] 骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55.
[19] Zhu G B,Blumberg D G.Classification Using ASTER Data and SVM Algorithms:The Case Study of Beer Sheva,Israel[J].Remote Sens Environ,2002,80(2):233-240.
[20] 赵书河,冯学智,都金康,等.基于支持向量机的SPIN-2影像与SPOT-4多光谱影像融合研究[J].遥感学报,2003,7(5):407-411.
[21] Foody G M,Mathur A.Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification[J].Remote Sens Environ,2004,93(1/2):107-117.
[22] Foody G M,Mathur A.The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification:Training on Mixed Spectral Responses for Classification by a SVM[J].Remote Sens Environ,2006,103(2):179-189.
[23] 张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57.
[24] Mazzoni D,Garay M J,Davies R,et al.An Operational MISR Pixel Classifier Using Support Vector Machines[J].Remote Sens Environ,2007,107(1/2):149-158.
[25] Su L H,Chopping M J,Rango A,et al.Support Vector Machines for Recognition of Semi-arid Vegetation Types Using MISR Multi-angle Imagery[J].Remote Sens Environ,2007,107(1/2):299-311.
[26] Huang C,Song K,Kim S,et al.Use of a Dark Object Concept and Support Vector Machines to Automate Forest Cover Change Analysis[J].Remote Sens Environ,2008,112(3):970-985.
[27] Esch T,Himmler V,Schorcht G,et al.Large-area Assessment of Impervious Surface Based on Integrated Analysis of Single-date Landsat-7 Images and Geospatial Vector Data[J].Remote Sens Environ,2009,113(8):1678-1690.
[28] 李建平,张柏,张泠,等.湿地遥感监测研究现状与展望[J].地理科学进展,2007,26(1):33-43.
[29] 符淙斌,延晓冬,郭维栋.北方干旱化与人类适应——以地球系统科学观回答面向国家重大需求的全球变化的区域响应和适应问题[J].自然科学进展,2006,16(10):1216-1223.
[30] Rouse J W,Haas R H,Schell J A.Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation[R].Greenbelt,MD:NASA/GSFC(Type III,Final Report),1974.
[31] McFeeters S K.The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J].Int J Remote Sens,1996,17(7):1425-1432.
[32] 查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J].地理学报,2003,7(1):37-41.
[33] 何灵敏,沈掌泉,孔繁胜,等.SVM在多源遥感图像分类中的应用研究[J].中国图象图形学报,2007,12(4):648-654.
[34] 张锦水,潘耀忠,韩立建,等.光谱与纹理信息复合的土地利用/覆盖变化动态监测研究[J].遥感学报,2007,11(4):500-510.
[35] 朱会义,李秀彬.关于区域土地利用变化指数模型方法的讨论[J].地理学报,2003,58(5):643-650.
[1] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[2] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[3] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[4] XIA Yan, HUANG Liang, CHEN Pengdi. Tobacco fine extraction from UAV image based on fuzzy-superpixel segmentation algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(1): 115-122.
[5] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[6] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[7] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[8] Haihui HAN, Guangli REN, Yilin WANG, Min YANG, Anqiang YAO, Zhuan ZHANG. Application of collaborative processing method to the analysis of remote sensing alteration abnormal causes: A case study of Fangshankou area in Beishan[J]. Remote Sensing for Land & Resources, 2020, 32(1): 138-147.
[9] Qinglin TIAN, Wei PAN, Yao LI, Chuan ZHANG, Xuejiao CHEN, Zhangfa YU. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41-46.
[10] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[11] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[12] Honglin MA, Weijie JIA, Changliang FU, Wei LI. Extraction of geological structural and alteration information and the prediction of metallogenic favorable locations in northeastern Jeddah, Saudi Arabia[J]. Remote Sensing for Land & Resources, 2019, 31(3): 174-182.
[13] Junbin DUAN, Peng PENG, Zhi YANG, Le LIU. Prediction of polymetallic metallogenic favorable area based on ASTER data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 193-200.
[14] Yang ZHOU, Yunsheng ZHANG, Siyang CHEN, Zhengrong ZOU, Yaochen ZHU, Ruixue ZHAO. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land & Resources, 2019, 31(2): 44-50.
[15] Zhan YIN, Lijun ZHANG, Jianliang DUAN, Pei ZHANG. Improvement and application of forced invariance vegetation suppression in southern vegetation area[J]. Remote Sensing for Land & Resources, 2019, 31(2): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech