Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 33-37     DOI: 10.6046/gtzyyg.2012.03.07
Technology and Methodology |
Ship Wake Detection in ASAR Image Based on Modified Normalized Hough Transform
GONG Biao, HUANG Wei-gen, CHEN Peng
State Key Laboratory of Satellite Ocean Environment Dynamics(SOED), Second Institute of Oceanography, State Bureau of Oceanic Administration, Hangzhou 310012, China
Download: PDF(1103 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  A ship wake detection method based on modified normalized Hough transform was proposed in this paper according to the fact that parts of ships and their wakes are nearly on a straight line in advanced synthetic aperture radar(ASAR)image. Experiments were made to verified the method. On the one hand,the peaks were modified in Hough transform field; on the other hand,the constraint conditions confirming initial and end points of ships were amended. The experimental results show that the method of wake detection in the ASAR image can more accurately detect ship wakes.
Keywords simulation of Poyang Lake’s water level      control water      submerged scope      Poyang Lake      World Wind      GIS     
:  TP751.1  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Xiao-ming
DU Pei-jun
WANG Ying-chun
JIN Ju-liang
XU Shan-jian
Cite this article:   
QI Xiao-ming,DU Pei-jun,WANG Ying-chun, et al. Ship Wake Detection in ASAR Image Based on Modified Normalized Hough Transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 33-37.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.07     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/33
[1] Gasparovic R.Observation of Ship Wakes from Space [C]//AIAA Space Programs and Technologies Conference Huntsville AL,1992:24-27.
[2] Skoelv A,Wahl T,Eriksen S,et al.Simulation of SAR Imaging of Ship Wakes [C]//IGARSS.Proceedings of IGARSS’88.Edinburgh Scotland:IGARSS,1988:851-854.
[3] 周红建,陈越,王正志,等.应用Radon变换方法检测窄V形船舶航迹[J].中国图像图形学报,2000,5A(11):901-905. Zhou H J,Chen Y,Wang Z Z,et al.Apply Radon Transform to Detect Narrow V Ship Wake in SAR Images[J].Journal of Image and Graphics,2000,5A(11):901-905 (in Chinese with English Abstract).
[4] 周红建,周宗潭,李相迎,等.一种从ERS-1 SAR海洋图像中检测船舶航迹的算法[J].遥感学报,2000,4(1):55-60. Zhou H J,Zhou Z T,Li X Y,et al.Algorithm to Detect the Ship Wake from ERS-1 SAR Ocean Imagery[J].Journal of Remote Sensing,2000,4(1):55-60(in Chinese with English Abstract).
[5] 周红建,李相迎,王正志,等.应用形态学算子检测SAR图像中的湍流航迹[J].宇航学报,2000,21(2):58-63. Zhou H J,Li X Y,Wang Z Z,et al.Apply Morphological Operators to Detect Turbulent Ship Wakes in SAR Imagery[J].Journal of Astron autics,2000,21(2):58-63(in Chinese with English Abstract).
[6] 种劲松,朱敏慧.SAR图像舰船及其尾迹检测研究综述[J].电子学报,2003,31(9):1356-1360 Chong J S,Zhu M H.Survey of the Study on Ship and Wake Detection in SAR Imagery[J].Acta Electronica Sinica,2003,31(9):1356-1360(in Chinese with English abstract).
[7] Lyden J D,Lyzenga D R,Shuchman R A,et al.Analysis of Synthetic Aperture Radar Imagery of Surface Ship Wakes[C]// IGARSS.Proceedings of IGARSS’86. Zurich:IGARSS,1986:801-805.
[8] Murphy L M.Linear Feature Detection and Enhancement in Noisy Images via the Radon Transform [J].Pattern Recognition Letters,1986,4(4):279-284.
[9] Hough P V C.A Method and Means for Recognizing Complex Patterns:US,3069654[P].1962-12-18.
[10] Rey M T,Tunaley J K,Folinsbee J T,et al.Application of Radon Transform Techniques to Wake Detection in Seasat-ASAR Images [J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):553-560.
[11] Copeland A C,Ravichandran G,Trivedi M M.Localized Radon Transform-based Detection of Ship Wakes in SAR Images[J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(1):35-45.
[12] 王世庆,金亚秋.SAR图像船行尾迹检测的Radon变换和形态学图像处理技术[J].遥感学报,2001,5(4):289-294. Wang S Q,Jin Y Q.Ship Wake Detection in SAR Images Based on Radon Transformation and Morphologic Image Processing[J].Journal of Remote Sensing,2001,5(4):289-294(in Chinese with English Abstract).
[13] 张晓燕,尤红建,付琨.基于Radon变换的星载SAR图像窄V尾迹检测[J].测绘科学,2009,34(2):117-119. Zhang X Y,You J K,Fu K.Detection of Narrow V Ship Wakes in SAR Images Based on Radon Transform[J].Science of Surveying and Mapping,2009,34(2):117-119(in Chinese with English Abstract).
[14] 种劲松,朱敏慧.基于归一化灰度Hough变换的SAR图像舰船尾迹检测算法[J].中国图象图形学报,2004,9(2):146-150. Chong J S,Zhu M H.Ship Wake Detection Algorithm in SAR Image Based on Normalized Grev Level Hough Transform[J].Journal of Image and Graphics,2004,9(2):146-150(in Chinese with English Abstract).
[15] 艾加秋,齐向阳,禹卫东,等.一种基于图像分割和归一化灰度Hough变换的SAR图像舰船尾迹CFAR检测算法[J].电子与信息学报,2010,32(11):2668-2673. Ai J Q,Qi X Y,Yu W D,et al.A New Ship Wake CFAR Detection Algorithm in SAR Images Based on Image Segmentation and Normalized Hough Transform[J].Journal of Electronics and Information Technology,2010,32(11):2668-2673(in Chinese with English Abstract).
[16] 周红建,张翠,王正志,等.从卫星SAR海洋图像中检测船目标及其航迹[J].宇航学报,2000,21(4):117-123. Zhou H J,Zhang C,Wang Z Z,et al.Detection of Ship and Ship Wake from Satellite SAR Imagery[J].Journal of Astronautics,2000,21(4):117-123(in Chinese with English Abstract).
[17] 王连亮,陈怀新.基于递归修正Hough变换域的舰船多尾迹检测方法[J].系统工程与电子技术,2009,31(4):834-837. Wang L L,Chen H X.Multi-ship Wakes Detection Method Based on Recursive Modified Hough Transform Field[J].Systems Engineering and Electronics,2009,31(4):834-837(in Chinese with English Abstract).
[18] 李杭彩,方景龙,王晓飞.基于Hough变换的SAR图像舰船尾迹检测方法[J].杭州电子科技大学学报,2009,29(1):71-74. Li H C,Fang J L,Wang X F.Detection of SAR Image Ship Wake Based on Hough Transform[J].Journal of Hangzhou Dianzi University,2009,29(1):71-74(in Chinese with English Abstract).
[19] Wang J F,Howarth P J.Use of the Hough Transform in Automated Lineament[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):561-566.
[20] Deans S R.Hough Transform from the Radon Transform [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1981,3(2):185-188.
[21] 马龙,陈文波,戴模.ENVISAT的ASAR数据产品介绍[J].国土资源遥感,2005(1):70-71. Ma L,Chen W B,Dai M.Introduction to ENVISAT-ASAR Data Production[J].Remote Sensing for Land and Resources,2005(1):70-71(in Chinese with English Abstract).
[22] 陈劲松,邵芸,林晖.ENVISAT-ASAR数据的特点及其在多云多雨地区的应用前景[J].遥感技术与应用,2004,19(6):517-520. Chen J S,Shao Y,Lin H.Characteristics and Analysis of Application of Envisat-ASAR Data[J].Remote Sensing Technology and Application,2004,19(6):517-520(in Chinese with English Abstract).
[23] 种劲松,欧阳越,朱敏慧.合成孔径雷达图像海洋目标检测[M].北京:海洋出版社,2006. Chong J S,Ouyang Y,Zhu M H.Marine Target Detection of SAR Image[M].Beijing:China Ocean Press,2006(in Chinese).
[1] LI Dong, TANG Cheng, ZOU Tao, HOU Xiyong. Detection and assessment of the physical state of offshore artificial reefs[J]. Remote Sensing for Natural Resources, 2022, 34(1): 27-33.
[2] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[5] WANG Shuang, ZHANG Lei, ZHANG Junyong, WANG Yile. Characteristics of GIS applications in national fitness[J]. Remote Sensing for Natural Resources, 2021, 33(4): 265-271.
[6] ZHAO Longxian, DAI Jingjing, ZHAO Yuanyi, JIANG Qi, LIU Tingyue, FU Minghai. A study of mine site selection of the Duolong ore concentration area in Tibet based on RS and GIS technology[J]. Remote Sensing for Land & Resources, 2021, 33(2): 182-191.
[7] MIAO Miao, XIE Xiaoping. Spatial-temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land & Resources, 2021, 33(2): 237-247.
[8] ZHANG Mengsheng, YANG Shuwen, JIA Xin, ZANG Liri. An automatic registration algorithm for remote sensing images based on grid index[J]. Remote Sensing for Land & Resources, 2021, 33(1): 123-128.
[9] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[10] Yongquan WANG, Qingquan LI, Chisheng WANG, Jiasong ZHU, Xinyu WANG. Tethered UAVs-based applications in emergency surveying and mapping[J]. Remote Sensing for Land & Resources, 2020, 32(1): 1-6.
[11] Renbo SONG, Yuxin ZHU, Shangshan DING, Qiaoning HE, Xiyuan WANG, Yuexiang WANG. An automatic method for extracting skeleton lines from arbitrary polygons based on GIS spatial analysis[J]. Remote Sensing for Land & Resources, 2020, 32(1): 51-59.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Xuanchi CHEN, Rong CHEN, Yufeng WU, Yueyue WANG. Research on the geological background of tea planting in Duyun City based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 224-231.
[14] Zhaorong MEI, Yunju LI, Xiang KANG, Shanbao WEI, Jianjun PAN. Temporal and spatial evolution in landscape pattern of mining site area based on moving window method[J]. Remote Sensing for Land & Resources, 2019, 31(4): 60-68.
[15] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech