Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (3) : 135-139     DOI: 10.6046/gtzyyg.2012.03.24
Technology Application |
Quantitative Prediction of Karst Rocky Desertification Deterioration Based on RS and GIS: A Case Study of Typical Karst Rocky Desertification Area of Du’an County, Guangxi
CHENG Yang1,2, CHEN Jian-ping1,2, HUANGFU Jiang-yun3,4, TONG Li-qiang5
1. Institute of High and New Techniques Applied to Land Resources, China University of Geosciences, Beijing 100083, China;
2. Beijing Key Laboratory of Development and Research for Land Resources Information, Beijing 100083, China;
3. Forestry College, Beijing Forestry University, Beijing 100083, China;
4. Forage and Feed Station of Guizhou Province, Guiyang 550001, China;
5. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China
Download: PDF(1005 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  Taking Du’an County of Guangxi as the study area,using the TM remote sensing images acquired in 1999 and 2009 as the data source, adopting RS and GIS as the technical means and platform, and utilizing the carbonate rock type, land use type,karst landform type,slope of the terrain and population density as the influencing factors, the authors calculated the rocky desertification deterioration index(RDDI) by using the analytical hierarchy process-certainty factor(AHP-CF) method,and then predicted the trend of rocky desertification deterioration quantitatively with RDDI as parameters. The prediction results can provide a scientific basis for making a prospective and specific plan concerning ecological environment protection and recovery and promote the work of rocky desertification prevention and control.
Keywords image fusion      partial algorithm      wavelet transformation      object-oriented classification     
:  TP79  
Issue Date: 20 August 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Zhang-yu
ZHAO Ping
LIU Dian-wei
WANG Zong-ming
TANG Xu-guang
Liu Jing-yi
Cite this article:   
DONG Zhang-yu,ZHAO Ping,LIU Dian-wei, et al. Quantitative Prediction of Karst Rocky Desertification Deterioration Based on RS and GIS: A Case Study of Typical Karst Rocky Desertification Area of Du’an County, Guangxi[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(3): 135-139.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.03.24     OR     https://www.gtzyyg.com/EN/Y2012/V24/I3/135
[1] 袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988. Yuan D X,Chai G H.Karst Environment[M].Chongqing: Chongqing Press,1988(in Chinese).
[2] 王世杰.喀斯特石漠化概念演绎及其科学内涵的探讨[J].中国岩溶,2002,21(2):101-105. Wang S J.Concept Deduction and Its Connotation of Karst Rocky Desertification[J].Carsologica Sinica,2002,21(2):101-105(in Chinese with English Abstract).
[3] 童立强,丁富海.西南岩溶石山地区石漠化遥感调查与演变分析项目成果报告[R].北京:国土资源部,2002. Tong L Q,Ding F H.Remote Sensing Investigation of Rocky Desertification and Evolution Analysis from Karst Mountainous Area in Southwest China[R].Beijing:Ministry of Land and Resources,2002(in Chinese).
[4] 刘春玲,童立强,聂洪峰,等.中国东部重要经济区带基础地质环境遥感调查与监测项目成果报告之二(石漠化遥感调查报告)[R].北京:国土资源部,2010. Liu C L,Tong L Q,Nie H F,et al.Basic Geological Environment Investigation and Inspection in China Eastern Economic Zone(Remote Sensing Investigation of Rocky Desertification)[R].Beijing:Ministry of Land and Resources,2010(in Chinese).
[5] 胡宝清,廖赤眉,严志强,等.基于RS和GIS的喀斯特石漠化驱动机制分析——以广西都安瑶族自治县为例[J].山地学报,2004,22(5):583-590. Hu B Q,Liao C M,Yan Z Q,et al.Diving Mechanism Diagnosis of Karst Rocky Desertification in Du’an Yao Autonomous County of Guangxi Based on RS and GIS[J].Journal of Mountain Science,2004,22(5):583-590(in Chinese with English Abstract).
[6] 吴虹,陈三明,李锦文.都安石漠化趋势遥感分析与预测[J].国土资源遥感,2002(2):15-19. Wu H,Chen S M,Li J W.Remote Sensing Analysis and Prognosis of Desertification in Du’an[J].Remote Sensing for Land and Resources,2002(2):15-19(in Chinese with English Abstract).
[7] 童立强.西南岩溶石山地区石漠化信息自动提取技术研究[J].国土资源遥感,2003(4):35-38. Tong L Q.A Method for Extracting Remote Sensing Informatin from Rocky Desertificationareas in Southwest China[J].Remote Sensing for Land and Resources,2003(4):35-38(in Chinese with English Abstract).
[8] 《运筹学》教材编写组.运筹学第三版[M].北京:清华大学出版社,2005. Operations Research Teaching Material Compilation Group.Operations Research III[M].Beijing:Tsinghua University Press,2005(in Chinese).
[1] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[2] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[3] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
[4] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[5] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[6] MA Ruiqi, CHENG Bo, LIU Xu’nan, LIU Yueming, JIANG Wei, YANG Chen. Research on GF-1 remote sensing IHS image fusion algorithm based on compressed sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 26-32.
[7] YIN Feng, CAO Liqin, Liang Peng. Application of improved Welsh’s color transfer algorithm to GF-2 image fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 126-131.
[8] LI Chengyi, TIAN Shufang. Super-resolution fusion method for remote sensing image based on dictionary learning[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 50-56.
[9] HUA Yongchun, LI Zengyuan, GAO Zhihai, GUO Zhong. Extraction of Nitaria tangutorum dune in Minqin County based on GF-2 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 71-77.
[10] SUN Pan, DONG Yusen, CHEN Weitao, MA Jiao, ZOU Yi, WANG Jinpeng, CHEN Hua. Research on fusion of GF-2 imagery and quality evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 108-113.
[11] LIANG Jianping, MA Daxi, MAO Dehua, WANG Zongming. Remote sensing based estimation of Phragmites australis aboveground biomass in Shuangtai Estuary National Nature Reserve[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 60-66.
[12] LI Xuedong, ZHANG Hongyan, YANG Guangbin, LI Xiaosong, ZHOU Yue. Extraction of land cover information of Karst based on landform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 138-145.
[13] ZHAO Zhiming, ZHOU Xiaocheng, FU Qiankun, WANG Xiaoqin. Method for extraction of building height information based on ZY-3 image[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 19-24.
[14] MA Shibin, YANG Wenfang, ZHANG Kun. Study of key technology of SPOT6 satellite image processing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 30-35.
[15] LI Wenjing, WEN Wenpeng, WANG Qinghe. A study of remote sensing image fusion method based on Contourlet transform[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech