Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (1) : 57-64     DOI: 10.6046/gtzyyg.2017.01.09
Technology and Methodology |
Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau
LI Xiaomin1,2, ZHANG Kun1,2, LI Dongling1,2, LI Delin1,2, LI Zongren1,2, ZHANG Xing1,2
1. Qinghai Province North of the Qinghai-Tibet Plateau Geological Process and Mineral Resources Key Laboratories, Xining 810012, China;
2. Institute of Geological Survey of Qinghai Province, Xining 810012, China
Download: PDF(10709 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In order to obtain a better understanding of the spatial distribution of permafrost in Zhada area of the Tibetan Plateau, the authors used different remote sensing models to delineate the depth of permafrost and employed elevation model and temperature model to compare the results. According to the result, the study area covers 17 148.93 km2. The authors summarized the interpretation signs for the depth of permafrost in this area. A comparative study of the 3 models can improve the mapping accuracy for the large scale permafrost, greatly reduce related project preceding work and improve efficiency. It is concluded that the application value of the remote sensing technology delineation method is high. Therefore, the remote sensing technology delineation method is very useful in such fields as regional hydrogeology, engineering geology and climate change in the Tibetan Plateau.

Keywords northern Tibet      Ngari area      cryosphere      remote sensing monitoring      snow cover     
:  TP751.1  
Issue Date: 23 January 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Yunpeng
LIU Gang
LIU Jianyu
HAN Cong
ZHAO Zixian
Cite this article:   
YAN Yunpeng,LIU Gang,LIU Jianyu, et al. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.01.09     OR     https://www.gtzyyg.com/EN/Y2017/V29/I1/57

[1] 周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000:40-46. Zhou Y W,Guo D X,Qiu G Q,et al.Geocryology of China[M].Beijing:Science Press,2000:40-46.
[2] 王坤,陈凤臻,陈立春,等.基于RS/GIS的冻土分布模拟研究现状[J].赤峰学院学报:自然科学版,2012,28(10):122-124. Wang K,Chen F Z,Chen L C,et al.The research status of permafrost distribution simulation based on RS and GIS[J].Journal of Chifeng University:Natural Science Edition,2012,28(10):122-124.
[3] 李静,盛煜,焦士兴.高山多年冻土分布模型与制图研究进展[J].冰川冻土,2009,31(4):679-687. Li J,Sheng Y,Jiao S X.Progress in mapping and modeling the distribution of alpine permafrost in China and abroad[J].Journal of Glaciology and Geocryology,2009,31(4):679-687.
[4] 张秀敏,盛煜,赵林,等.基于分区和多元数据的青藏高原温泉区域多年冻土分布研究[J]. 地理科学,2012,32(12):1513-1520. Zhang X M,Sheng Y,Zhao L,et al.Permafrost distribution using sub-region classification and multivariate data in the Wenquan Area over the Qinghai-Tibet Plateau[J].Scientia Geographica Sinica,2012,32(12):1513-1520.
[5] 张秀敏,南卓铜,吴吉春,等.基于多元自适应回归样条的青藏高原温泉区域的冻土分布制图[J].冰川冻土,2011,33(5):1088-1097. Zhang X M,Nan Z T,Wu J C,et al.Modeling permafrost distribution in Wenquan area over Qinghai-Tibet Plateau by using multivariate adaptive regression splines[J].Journal of Glaciology and Geocryology,2011,33(5):1088-1097.
[6] 陈艳丽,李少梅,刘岱岳.基于规则格网DEM的坡度坡向分析研究[J].测绘与空间地理信息,2009,32(5):36-39. Chen Y L,Li S M,Liu D Y.Analysis of slope and aspect based on regular grid DEM[J].Geomatics & Spatial Information Technology,2009,32(5):36-39.
[7] 李静,盛煜,吴吉春,等.等效高程方法在祁连山区高山/高海拔多年冻土分布模型中的应用[J].冰川冻土,2011,33(2):357-363. Li J,Sheng Y,Wu J C,et al.Application of the equivalent-elevation approach to alpine permafrost distribution models in the upper reaches of the Shule River,Qilian Mountains[J].Journal of Glaciology and Geocryology,2011,33(2):357-363.
[8] 李昆,陈继,赵林,等.基于综合调查的西昆仑山典型区多年冻土分布研究[J].冰川冻土,2012,34(2):447-454. Li K,Chen J,Zhao L,et al.Permafrost distribution in typical area of West Kunlun Mountains derived from a comprehensive survey[J].Journal of Glaciology and Geocryology,2012,34(2):447-454.
[9] 南卓铜,黄培培,赵林.青藏高原西部区域多年冻土分布模拟及其下限估算[J].地理学报,2013,68(3):318-327. Nan Z T,Huang P P,Zhao L.Permafrost distribution modeling and depth estimation in the western Qinghai-Tibet Plateau[J].Acta Geographica Sinica,2013,68(3):318-327.
[10] 王绍令,罗祥瑞,郭鹏飞.青藏高原东部冻土分布特征[J].冰川冻土,1991,13(2):131-140. Wang S L,Luo X R,Guo P F.The distributive characteristics of frozen ground in the east of Qinghai-Xizang Plateau[J].Journal of Glaciology and Geocryology,1991,13(2):131-140.
[11] 刘春国,卢晓峰,高松峰.Lansat-7 ETM+热红外波段高低增益状态数据反演亮度温度比较研究[J].河南理工大学学报:自然科学版,2011,30(5):561-566. Liu C G,Lu X F,Gao S F.Comparison of brightness temperatures inversed from high and low gain state data of Lansat-7 ETM+ thermal infrared band[J].Journal of Henan Polytechnic University:Natural Science,2011,30(5):561-566.
[12] 宋彩英,覃志豪,王斐.基于Landsat TM的地表温度分解算法对比[J].国土资源遥感,2015,27(1):172-177.doi:10.6046/gtzyyg.2015.01.27. Song C Y,Qin Z H,Wang F.Comparison of two models for decomposition of land surface temperature image using Landsat TM data[J].Remote Sensing for Land and Resources,2015,27(1):172-177.doi:10.6046/gtzyyg.2015.01.27.
[13] 张戎垦,朱俊杰,范湘涛.遥感数据的温度反演方法及其试验算例[J].工程勘查,2011,39(4):56-58,83. Zhang R K,Zhu J J,Fan X T.Inversion of temperature data from remote sensing[J].Geotechnical Investigation & Surveying,2011,39(4):56-58,83.
[14] 覃志豪,Zhang M H,Karnieli A,等.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001,56(4):456-466. Qin Z H,Zhang M H,Karnieli A,et al.Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data[J].Acta Geographica Sinica,2001,56(4):456-466.
[15] 颜长珍,冯毓荪,王建华,等.西北地区土地资源类型TM影像解译标志的建立[J].中国沙漠,1999,19(3):206-209. Yan C Z,Feng Y S,Wang J H,et al.Establishing the interpreting key system on TM image of land resources types in Northwest China[J].Journal of Desert Research,1999,19(3):206-209.
[16] 常晓丽,金会军,王永平,等.植被对多年冻土的影响研究进展[J].生态学报,2012,32(24):7981-7990. Chang X L,Jin H J,Wang Y P,et al.Influences of vegetation on permafrost:A review[J].Acta Ecologica Sinica,2012,32(24):7981-7990.
[17] 李树德,李世杰.青海可可西里地区多年冻土与冰缘地貌[J].冰川冻土,1993,15(1):77-82. Li S D,Li S J.Permafrost and periglacial landforms in Kekexili area of Qinghai Province[J].Journal of Glaciology and Geocryology,1993,15(1):77-82.
[18] 胡宏昌,王根绪,王一博,等.江河源区典型多年冻土和季节冻土区水热过程对植被盖度的响应[J].科学通报,2009,54(2):242-250. Hu H C,Wang G X,Wang Y B,et al.Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J].Chinese Science Bulletin,2009,54(7):1225-1233.
[19] 吴吉春,盛煜,于晖,等.祁连山中东部的冻土特征(Ⅰ):多年冻土分布[J].冰川冻土,2007,29(3):418-425. Wu J C,Sheng Y,Yu H,et al.Permafrost in the Middle-East section of Qilian Mountains(I):Distribution of permafrost[J].Journal of Glaciology and Geocryology,2007,29(3):418-425.
[20] 李树德,程国栋.青藏高原冻土图[M].兰州:甘肃文化出版社,1996. Li S D,Cheng G D.Map of Permafrost Distribution over Qinghai-Tibet Plateau[M].Lanzhou:Gansu Culture Press,1996.
[21] 尕玛多吉.西藏冰川近30年退缩幅度为此前200年之和[N/OL].光明日报,2015-07-18(1).http://epaper.gmw.cn/gmrb/html/2015-07/18/nw.D110000gmrb_20150718_4-01.htm?div=-1. Ga M D J.The glacier nearly 30 years in the past for the sum of previous 200 years before in the Tibet[N/OL].Guangming Daily,2015-07-18(1).http://epaper.gmw.cn/gmrb/html/2015-07/18/nw.D110000gmrb_20150718_4-01.htm?div=-1.
[22] 张瑞江,方洪宾,赵福岳.青藏高原近30年来现代冰川的演化特征[J].国土资源遥感,2010,22(s1):49-53.doi:10.6046/gtzyyg.2010.s1.12. Zhang R J,Fang H B,Zhao F Y.The evolution of existing glaciers in the past 30 years in Qinghai-Tibet Plateau[J].Remote Sensing for Land and Resources,2010,22(s1):49-53.doi:10.6046/gtzyyg.2010.s1.12.

[1] CHEN Dong, YAO Weiling. Automatic numbering and method improvement of mine patches based on ArcPy and custom ArcToolbox[J]. Remote Sensing for Land & Resources, 2021, 33(2): 262-269.
[2] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[3] WANG Jie, LIU Xiaoyang, YANG Jinzhong, ZHOU Yingjie, An Na, WANG Zhihui. Typical model analysis of mine geological environment restoration and management in Zhejiang Province based on domestic high-resolution satellite data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 216-221.
[4] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[5] Xi LIU, Lina HAO, Xianhua YANG, Jie HUANG, Zhi ZHANG, Wunian YANG. Research and implementation of rapid statistical methods for mine remote sensing monitoring indicators[J]. Remote Sensing for Land & Resources, 2020, 32(2): 259-265.
[6] Jie WANG, Yaqiu YIN, Hang YU, Cunhao JIANG, Yu WAN. Remote sensing monitoring of mine geological environment in Zhejiang Province based on RS and GIS[J]. Remote Sensing for Land & Resources, 2020, 32(1): 232-236.
[7] Yuling ZHAO, Jinzhong YANG, Yaqiu YIN, Hang ZHAO, Jinbao HE, Han ZHANG. Research on remote sensing monitoring of zirconium-titanium sand mine exploitation and strategies of ecological restoration on the eastern beach of Hainan Island[J]. Remote Sensing for Land & Resources, 2019, 31(4): 143-150.
[8] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
[9] Yunpeng YAN, Hui XU, Gang LIU, Jianyu LIU. Analysis of the variations of the lake ice phenology in the Pangong Lake area from 2013 to 2017: Remote sensing survey of the cryosphere in the high altitude and alpine region, West China(Ⅰ)[J]. Remote Sensing for Land & Resources, 2019, 31(3): 209-215.
[10] Zhen CHEN, Yunshi ZHANG, Yuanyu ZHANG, Lingling SANG. A study of remote sensing monitoring methods for the high standard farmland[J]. Remote Sensing for Land & Resources, 2019, 31(2): 125-130.
[11] Xianhua YANG, Jie HUANG, Li TIAN, Bei PENG, Lixiao XIAO, Xinlong SONG. Application of mine remote sensing monitoring to analysis of mine goaf stability[J]. Remote Sensing for Land & Resources, 2018, 30(3): 143-150.
[12] Chungui ZHANG, Bingqing LIN. Application of FY-2E data to remote sensing monitoring of sea fog in Fujian coastal region[J]. Remote Sensing for Land & Resources, 2018, 30(1): 7-7.
[13] XUE Qing, WU Wei, LI Mingsong, DONG Shuangfa, ZHANG Xinyi, SHI Haigang. Application of GF-1 satellite data to remote sensing monitoring of the mine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 67-72.
[14] WANG Yijun, ZHAO Jun, WEI Wei, HAN Liqin. Remote sensing investigation and analysis of wetland in Gansu section of Heihe River Basin in the past 14 years[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 111-117.
[15] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech