Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (2) : 46-52     DOI: 10.6046/gtzyyg.2017.02.07
Contents |
Research on object-oriented remote sensing change detection method based on KL divergence
ZHU Hongchun1, 2, HUANG Wei1, LIU Haiying3, ZHANG Zhongfang1, WANG Bin1
1. Geomatics College, Shandong University of Science and Technology, Qingdao 266590, China;
2. Key Laboratory of Geomatics and Digital Technology, Qingdao 266590, China;
3. College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Download: PDF(847 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The change detection of remote sensing image has many research results from face-to-face to object-oriented operation and from the threshold to the similarity measurement; nevertheless, there are many problems such as the selection of the segmentation parameters, the determination of the change of the object and the degree of the change of the object. In view of such a situation, this paper proposes a new method based on similarity measurement to detect the change. This method has broken the performance form which has been used to detect the change of the results. Firstly, the optimal parameters of image object segmentation are calculated, and then the image patches are obtained. After that, the similarity coefficients are calculated by KL similarity calculation method, and the natural clustering features of the coefficients are calculated. The results show that the changes of the national economic development, disaster prevention and land use management decision-making are obvious, which shows the scientific nature and effectiveness of this method.
Keywords Hapke model      mixed spectra      reflectance spectra      simulation spectra      mineral     
Issue Date: 03 May 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhe
ZHAO Zhe
YAN Bokun
YANG Suming
Cite this article:   
WANG Zhe,ZHAO Zhe,YAN Bokun, et al. Research on object-oriented remote sensing change detection method based on KL divergence[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 46-52.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.02.07     OR     https://www.gtzyyg.com/EN/Y2017/V29/I2/46
[1] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:242-245.
Zhao Y S.The Principle and Method of Analysis of Remote Sensing Application[M].Beijing:Science Press,2003:242-245.
[2] 龚 浩,张景雄,申邵洪.基于对象的对应分析在高分辨率遥感影像变化检测中的应用[J].武汉大学学报(信息科学版),2009,34(5):544-547,551.
Gong H,Zhang J X,Shen S H.Object-based correspondence analysis for improved accuracy in remote sensing change detection[J].Geomatics and Information Science of Wuhan University,2009,34(5):544-547,551.
[3] 唐朴谦,杨建宇,张 超,等.基于像素比值的面向对象分类后遥感变化检测方法[J].遥感信息,2010(1):69-72.
Tang P Q,Yang J Y,Zhang C,et al.An object-oriented post-classification remote sensing change detection after the pixel ratio[J].Remote Sensing Information,2010(1):69-72.
[4] 张 辉,王建国.一种基于主分量分析的SAR图像变化检测算法[J].电子与信息报,2008,30(7):1727-1730.
Zhang H,Wang J G.A SAR image change detection algorithm based on principal component analysis[J].Journal of Electronics & Information Technology,2008,30(7):1727-1730.
[5] Lu D,Mausel P,Brondízio E,et al.Change detection techniques[J].International Journal of Remote Sensing,2004,25(12):2365-2401.
[6] Ridd M K,Liu J J.A comparison of four algorithms for change detection in an urban environment[J].Remote Sensing of Environment,1998,63(2):95-100.
[7] 周启鸣.多时相遥感影像变化检测综述[J].地理信息世界,2011,9(2):28-33.
Zhou Q M.Review on change detection using multi-temporal remotely sensed imagery[J].Geomatics World,2011,9(2):28-33.
[8] 汤玉奇.面向对象的高分辨率影像城市多特征变化检测研究[D].武汉:武汉大学,2013.
Tang Y Q.Object-oriented Change Detection with Multi-feature in Urban High-Resolution Remote Sensing Imagery[D].Wuhan:Wuhan University,2013.
[9] 祝锦霞,王 珂.面向对象的高分辨率影像变化检测方法研究[J].农业机械学报,2013,44(4):184-189.
Zhu J X,Wang K.Object-oriented change detection method using very high spatial resolution imagery[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(4):184-189.
[10] 劳小敏.基于对象的高分辨率遥感影像土地利用变化检测技术研究[D].杭州:浙江大学,2013.
Lao X M.The Research of Object-based High Resolution Remote Sensing Land Use Change Detection[D].Hangzhou:Zhejiang University,2013.
[11] 洪 亮.基于对象马尔可夫模型的高分辨率遥感影像分割方法研究[D].武汉:武汉大学,2010.
Hong L.Research on the Segmentation of High Resolution Remote Sensing Image Based on Object-oriented Markovian Random Fields Model[D].Wuhan:Wuhan University,2010.
[12] 李 亮,龚 龑,李 雪,等.像斑直方图相似性测度的高分辨率遥感影像变化检测[J].遥感学报,2014,18(1):139-153.
Li L,Gong Y,Li X,et al.Change detection based on similarity measurement of object histogram using high-resolution remote sensing imagery[J].Journal of Remote Sensing,2014,18(1):139-153.
[13] 万幼川,申邵洪,张景雄.基于概率统计模型的遥感影像变化检测[J].武汉大学学报(信息科学版),2008,33(7):669-672,710.
Wan Y C,Shen S H,Zhang J X.Change detection of multi-time remote sensing images based on statistics models[J].Geomatics and Information Science of Wuhan University,2008,33(7):669-672,710.
[14] 尤红建,傅 琨.基于分布模型差异的SAR变化检测[J].武汉大学学报(信息科学版),2008,33(5):454-456,478.
You H J,Fu K.SAR change detection based on cluster distribution divergence[J].Geomatics and Information Science of Wuhan University,2008,33(5):454-456,478.
[15] 刘 臻,宫 鹏,史培军,等.基于相似度验证的自动变化探测研究[J].遥感学报,2005,9(5):537-543.
Liu Z,Gong P,Shi P J,et al.Study on change detection automatically based on similarity calibration[J].Journal of Remote Sensing,2005,9(5):537-543.
[16] 佃袁勇,方圣辉,姚崇怀.一种面向地理对象的遥感影像变化检测方法[J].武汉大学学报(信息科学版),2014,39(8):906-912.
Dian Y Y,Fang S H,Yao C H.The geographic object-based method for change detection with remote sensing imagery[J].Geomatics and Information Science of Wuhan University,2014,39(8):906-912.
[17] 靳华中.谱图理论支持下的高分辨率遥感影像多尺度分割研究[D].武汉:武汉大学,2011.
Jin H Z.High Resolution Remote Sensing Image Multi-scale Segmentation Support by Spectral Graph Theory[D].Wuhan:Wuhan University,2011.
[18] 段丽娟,高 文,林守勋,等.图像检索中的动态相似性度量方法[J].计算机学报,2001,24(11):1256-1262.
Duan L J,Gao W,Lin S X,et al.A dynamic similarity metric approach for image retrieval[J].Chinese Journal of Computers,2001,24(11):1256-1262.
[19] 聂方彦,高 潮,郭永彩.基于Tsallis广义散度的图像阈值分割[J].光电工程,2010,37(5):110-115.
Nie F Y,Gao C,Guo Y C.Image threshold segmentation based on Tsallis generalized divergence[J].Opto-Electronic Engineering,2010,37(5):110-115.
[20] 罗 裳.基于KL熵矩阵近似问题的研究[D].广州:华南理工大学,2014.
Luo C.Study on Matrix Approximation Problems with KL Entropy[D].Guangzhou:South China University of Technology,2014.
[21] 潘晓峰,刘红星.基于神经网络的图像KL变换方法的改进[J].微处理机,2005(4):26-28.
Pan X F,Liu H X.Improving Karhunen-loève transform of images based on neural networks[J].Microprocessors,2005(4):26-28.
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] LI Genjun, YANG Xuesong, ZHANG Xing, LI Xiaomin, LI Delin, DU Cheng. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land & Resources, 2021, 33(2): 134-140.
[3] JIANG Xiao, LU Yunge, SUN Ang, LI Yongzhi, LIAN Zheng. The application of domestic GF-1 satellite data to geological and mineral resources survey abroad: A case study of Faryab area, Iran[J]. Remote Sensing for Land & Resources, 2021, 33(1): 199-204.
[4] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[5] Shuang ZHU, Jinshui ZHANG. Medium resolution remote sensing based winter wheat mapping corrected by low-resolution time series remote sensing images[J]. Remote Sensing for Land & Resources, 2020, 32(1): 19-26.
[6] Haiqing WANG, Jianting HAO, Li LI, Na AN, Wenjia XU, Yaqiu YIN. Mining intensity analysis of each administrative region in Tibet based on remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(1): 115-119.
[7] Dingjian JIN, Jianchao WANG, Fang WU, Zihong GAO, Yachao HAN, Qi LI. Aerial remote sensing technology and its applications in geological survey[J]. Remote Sensing for Land & Resources, 2019, 31(4): 1-10.
[8] Chenchao XIAO, Xiaojuan WU, Daming WANG, Yongbin CHU. Oil-gas information extraction and prospective area prediction based on hydrocarbon microseepage theory: A case study of Salamat Basin in Central Africa[J]. Remote Sensing for Land & Resources, 2019, 31(4): 120-127.
[9] Chuan ZHANG, Fawang YE, Qingjun XU, Junting QIU. Deep drill logging and its alteration zoning features based on hyperspectral core imaging in west of Xiangshan uranium orefield[J]. Remote Sensing for Land & Resources, 2019, 31(2): 231-239.
[10] Ziyi WANG, Tingbin ZHANG, Guihua YI, Kanghui ZHONG, Xiaojuan BIE, Jibin WANG, Jiaojiao SUN. Extraction of hydrothermal alteration mineral groups of porphyry copper deposits using Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2018, 30(3): 89-95.
[11] Xiaoying DONG, Weihua LIN, Fujiang LIU, Qi ZHANG, Yuan CHANG. Lunar mineral mapping in Sinus Iridum in consideration of mineral grain sizes[J]. Remote Sensing for Land & Resources, 2018, 30(2): 147-153.
[12] ZHENG Xiongwei, YANG Jinzhong, CHEN Ling, CHEN Hua, SUN Yongjun, FU Changliang, TONG Liqiang, ZHONG Chang, WEI Yingjuan. A review on the effects of applying land and resources satellites to geology and mineral resources[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 1-7.
[13] YANG Rujun, XIE Guoxue. A discussion on domestic satellite data in land and resources supervision:Taking Guangxi Zhuang Autonomous Region as example[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 52-57.
[14] YANG Jinzhong, CHEN Wei, WANG Hui. Delineation of iron formation in Wenquangou Group along Heiqia Pass in West Kunlun metallogenic belt[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 191-195.
[15] REN Guangli, YANG Min, LI Jianqiang, GAO Ting, LIANG Nan, YI Huan, YANG Junlu. Application of hyperspectral alteration information to gold prospecting: A case study of Fangshankou area,Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 182-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech