Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (1) : 16-21     DOI: 10.6046/gtzyyg.2019.01.03
|
Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model
Yizhi LIU1,2, Huarong LAI3, Dingwang ZHANG4, Feipeng LIU2, Xiaolei JIANG2, Qing’an CAO2
1.School of Computer Science, China University of Geosciences(Wuhan), Wuhan 430074, China
2.Jiangxi Nuclear Industry Institute of Surveying and Mapping, Nanchang 330038, China
3.Guangdong United to the Real Estate Assessment Survey and Design Co. Ltd., Shaoguan 512100, China
4.Dongguan Zhenjiang Industrial Transfer Industrial Park Management Committee, Shaoguan 512100, China
Download: PDF(2114 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In view of the fact that different kernel functions have greatly different performance on the same feature, the authors propose a new method of change detection of multi-feature hybrid kernel support vector machine (SVM) model. According to the different characteristics of the change detection, the authors extract image features, make use of the multi-kernel function of several features, give the methods of constructing multi-feature and mixed-kernel function, construct change detection model of multi-feature mixed-nuclear support vector machine, and fully tap the integrity and accuracy of the varying target. The experimental results show that this method makes use of the information of various features. The detection precision is obviously higher than that of the single feature. The method not only takes advantage of extracting change information of small samples, but also avoids the complexity and uncertainty of the old detection method for determining the change threshold.

Keywords object oriented      change detection      multi-feature      mixed kernel      support vector machines (SVM)     
:  TP751  
Issue Date: 15 March 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yizhi LIU
Huarong LAI
Dingwang ZHANG
Feipeng LIU
Xiaolei JIANG
Qing’an CAO
Cite this article:   
Yizhi LIU,Huarong LAI,Dingwang ZHANG, et al. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.01.03     OR     https://www.gtzyyg.com/EN/Y2019/V31/I1/16
Fig.1  Flow chart of multi feature hybrid kernel SVM change detection model
Fig.2  City images
Fig.3  Detection results of SVM with different feature combinations
特征 变化类别 实际变化/km2 实际未变化/km2 合计/km2 虚检率/% 漏检率/% 正确率/%
光谱特征 变化 0.41 0.67 1.08 61.83 12.45 84.01
未变化 1.75 12.28 14.03
纹理特征 变化 1.21 0.93 2.14 43.27 7.29 87.61
未变化 0.95 12.03 12.98
融合光谱和纹理特征 变化 1.44 0.51 1.95 25.97 5.95 91.47
未变化 0.08 12.39 12.47
Tab.1  Accuracy assessment of detection results of SVM with different feature combinations
Fig.4  Comparison of detection results of different kernel functions
核函数 变化类别 实际变化/km2 实际未变化/km2 合计/km2 虚检率/% 漏检率/% 正确率/%
多项式核 变化 0.80 0.70 1.50 46.57 9.98 86.39
未变化 1.36 12.26 13.62
线性核 变化 0.79 0.45 1.24 36.29 12.75 85.31
未变化 1.77 12.11 13.88
RBF核 变化 1.16 0.65 1.81 35.98 7.55 89.05
未变化 1.01 12.31 13.32
混合核 变化 1.44 0.51 1.95 25.97 5.95 91.47
未变化 0.08 12.39 12.47
Tab.2  Comparison of detection results accuracy of different kernel functions
类别 文献[8]方法 文献[11] 方法 本文方法
虚检率 37.85 35.85 25.97
漏检率 10.60 9.67 5.95
正确率 87.45 88.11 91.47
Tab.3  Comparison of the accuracy of change detection algorithms(%)
[1] 夏朝旭, 何政伟, 于欢 , 等. 面向对象的土地覆被变化检测研究[J]. 遥感技术与应用, 2014,29(1):106-113.
doi: 10.11873/j.issn.1004-0323.2014.1.0106 url: http://d.wanfangdata.com.cn/Periodical/ygjsyyy201401016
[1] Xia C X, He Z W, Yu H , et al. Study on land cover change detection based on object-oriented[J]. Remote Sensing Technology and Application, 2014,29(1):106-113.
[2] Zhang G, Li Y, Li Z J . A new approach toward object-based change detection[J]. Science China Technological Sciences, 2010,53(s1):105-110.
doi: 10.1007/s11431-010-3215-1 url: http://www.cnki.com.cn/Article/CJFDTotal-JEXG2010S1015.htm
[3] Li F, Fang F M, Zhang G X . Unsupervised change detection in SAR images using curvelet and L1-norm based soft segmentation[J]. International Journal of Remote Sensing, 2016,37(14):3232-3254.
doi: 10.1080/01431161.2016.1196838 url: http://www.tandfonline.com/doi/full/10.1080/01431161.2016.1196838
[4] Bovolo F, Bruzzone L, Marconcini M . A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(7):2070-2082.
doi: 10.1109/TGRS.2008.916643 url: http://ieeexplore.ieee.org/document/4539638/
[5] 庄会富, 邓喀中, 范洪冬 . 纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测[J]. 测绘学报, 2016,45(3):339-346.
url: http://d.wanfangdata.com.cn/Periodical_chxb201603015.aspx
[5] Zhuang H F, Deng K Z, Fan H D . SAR images unsupervised change detection based on combination of texture feature vector with maximum entropy principle[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(3):339-346.
[6] 钟家强, 王润生 . 基于自适应参数估计的多时相遥感图像变化检测[J]. 测绘学报, 2005,34(4):331-336.
doi: 10.3321/j.issn:1001-1595.2005.04.009 url: http://www.cnki.com.cn/Article/CJFDTotal-CHXB200504009.htm
[6] Zhong J Q, Wang R S . Multitemporal remote sensing image change detection based on adaptive parameter estimation[J]. Acta Geodaetica et Cartographica Sinica, 2005,34(4):331-336.
[7] 魏立飞, 钟燕飞, 张良培 , 等, 遥感影像融合的自适应变化检测[J]. 遥感学报, 2010,14(6):1196-1211.
url: http://www.cqvip.com/QK/71135X/201107/36029834.html
[7] Wei L F, Zhong Y F, Zhang L P , et al. Adaptive change method of remote sensing image fusion[J]. Journal of Remote Sensing, 2010,14(6):1196-1211.
[8] 林怡, 刘冰, 陈映鹰 , 等, 多特征差分核支持向量机遥感影像变化检测方法[J]. 武汉大学学报(信息科学版), 2013,38(8):978-982.
url: http://d.wanfangdata.com.cn/Periodical/whchkjdxxb201308021
[8] Lin Y, Liu B, Chen Y Y , et al. Change detection method based on multi-feature differencing kernel SVM for remote sensing imagery[J]. Geomatics and Information Science of Wuhan University, 2013,38(8):978-982.
[9] Zien A, Ong C S. Multiclass multiple kernel learning [C]//Proceedings of the Twenty-Fourth International Conference Machine Learning (ICML).Corvallis:ACM, 2007.
[10] 谭琨, 杜培军 . 基于支持向量机的高光谱遥感图像分类[J]. 红外与毫米波学报, 2008,27(2):123-128.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ080817001762NjPmSp
[10] Tang K, Du P J . Hyperspectral remote sensing image classification based on support vector machine[J]. Journal of Information and Millimeter Waves, 2008,27(2):123-128.
[11] 田淞, 宋建社, 张雄美 , 等. KM-SVM法的SAR图像无监督变化检测[J]. 系统工程与电子技术, 2015,37(5):1042-1046.
doi: 10.3969/j.issn.1001-506X.2015.05.10 url: http://www.cqvip.com/QK/95985X/201505/664354894.html
[11] Tian S, Song J S, Zhang X M , et al. KM-SVM approach to unsupervised change detection in SAR images[J]. Systems Engineering and Electronics, 2015,37(5):1042-1046.
[12] 夏晨阳, 石爱业, 吴国宝 . 基于SVM混合核的遥感图像变化检测[J].信息技术, 2014(8):38-41.
doi: 10.3969/j.issn.1009-2552.2014.08.010 url: http://www.cqvip.com/QK/91788X/201408/662136465.html
[12] Xia C Y, Shi A Y, Wu G B . Remote sensing image change detection based on mixed kernel of SVM[J].Information Technology, 2014(8):38-41.
[13] 祁增营, 王京, 左正立 . 湿地变化监测研究现状与展望[J]. 遥感信息, 2012,27(6):124-132.
doi: 10.3969/j.issn.1000-3177.2012.06.021 url: http://www.cqvip.com/QK/92871X/201206/44328041.html
[13] Qi Z Y, Wang J, Zuo Z L . Current status and prospect of researches on wetland change monitoring[J]. Remote Sensing Information, 2012,27(6):124-132.
[14] 慕彩红, 霍利利, 刘逸 , 等, 基于小波融合和PCA-核模糊聚类的遥感图像变化检测[J]. 电子学报, 2015,43(7):1375-1381.
doi: 10.3969/j.issn.0372-2112.2015.07.019 url: http://www.cnki.com.cn/Article/CJFDTotal-DZXU201507019.htm
[14] Mu C H, Huo L L, Liu Y , et al. Change detection for remote sensing images based on wavelet fusion and PCA-kernel fuzzy clustering[J]. Acta Electronica Sinica, 2015,43(7):1375-1381.
[15] Wang X G, Jia Z H, Yang J , et al. Change detection in SAR images based on the logarithmic transformation and total variation denoising method[J]. Remote Sensing Letters, 2017,8(3):214-223.
doi: 10.1080/2150704X.2016.1258125 url: https://www.tandfonline.com/doi/full/10.1080/2150704X.2016.1258125
[16] 王光辉, 李建磊, 王华斌 , 等. 基于多特征融合的遥感影像变化检测算法[J]. 国土资源遥感, 2018,30(2):93-99.doi: 10.6046/gtzyyg.2018.02.13.
doi: 10.6046/gtzyyg.2018.02.13 url: http://www.cnki.com.cn/Article/CJFDTotal-GTYG201802013.htm
[16] Wang G H, Li J L, Wang H B , et al. Change detection based on adaptive fusion of multiple features[J]. Remote Sensing for Land and Resources, 2018,30(2):93-99.doi: 10.6046/gtzyyg.2018.02.13.
[17] 尹凌宇, 覃先林, 孙桂芬 , 等. 利用KPCA法检测高分一号影像中的森林覆盖变化[J]. 国土资源遥感, 2018,30(1):95-101.doi: 10.6046/gtzyyg.2018.01.13.
doi: 10.6046/gtzyyg.2018.01.13 url: http://d.old.wanfangdata.com.cn/Periodical_gtzyyg201801013.aspx
[17] Yin L Y, Qin X L, Sun G F , et al. The method for detecting forest cover change in GF-1images by using KPCA[J]. Remote Sensing for Land and Resources, 2018,30(1):95-101.doi: 10.6046/gtzyyg.2018.01.13.
[18] 邓曾, 李丹, 柯樱海 , 等. 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感, 2016,28(3):12-18.doi: 10.6046/gtzyyg.2016.03.03.
doi: 10.6046/gtzyyg.2016.03.03 url: http://www.cqvip.com/QK/91397X/201603/669995276.html
[18] Deng Z, Li D, Ke Y H , et al. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. Remote Sensing for Land and Resources, 2016,28(3):12-18.doi: 10.6046/gtzyyg.2016.03.03.
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[4] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[5] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[6] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[7] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[8] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[9] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[10] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[11] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[12] Liuqing WU, Xiangyun HU. Automatic building detection of high-resolution remote sensing images based on multi-scale and multi-feature[J]. Remote Sensing for Land & Resources, 2019, 31(1): 71-78.
[13] Zhan ZHAO, Wang XIA, Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
[14] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[15] Xinran ZHU, Bo WU, Qiang ZHANG. An improved CVAPS method for automatic updating of LUCC classification[J]. Remote Sensing for Land & Resources, 2018, 30(2): 29-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech