Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (4) : 161-165     DOI: 10.6046/gtzyyg.2017.04.24
Estimation of PM2.5 concentration from GF-1 data in Kaifeng City
HOU Aihua1, GAO Wei2, WANG Zhongting3, WANG Lin4
1. The Faculty of High Vocational Education,Xi’an University of Technology, Xi’an 710048, China;
2. Shaanxi Local Taxation Bureau, Xi’an 710048, China;
3. Satellite Environment Center, Ministry of Environmental Protection, Beijing 100094, China;
4. School of Information Science and Technology, Northwest University, Xi’an 710127, China
Download: PDF(2375 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  PM2.5is the key air pollution for air quality of Kaifeng City. With remote sensing technology, the distribution of PM2.5 concentration could be determined quickly. In this paper, the authors collected the aerosol optical depth (AOD) of GF-1, height of planetary boundary layer (HPBL), relative humidity (RH) and air temperature (AT) over Kaifeng City and then, with multiple regression analysis, revised the coefficients of all variables. After that, the authors built the PM2.5 retrieving model from GF-1 in Kaifeng City. The validation from June to September in 2015 showed that the PM2.5concentration from remote sensing was similar to that from four ground-level monitoring sites, and the correlation coefficient was higher than 0.8. The result of geographically weighted regression (GWR) was obviously better than that of no GWR. Nevertheless, when PM2.5 concentration was high, the model would underestimate PM2.5concentration.
Keywords cloud extraction      feature extraction      support vector machine     
:  TP79  
Issue Date: 04 December 2017
E-mail this article
E-mail Alert
Articles by authors
WEI Yingjuan
ZHENG Xiongwei
LEI Bing
GAN Yuhang
Cite this article:   
WEI Yingjuan,ZHENG Xiongwei,LEI Bing, et al. Estimation of PM2.5 concentration from GF-1 data in Kaifeng City[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 161-165.
URL:     OR
[1] Van Donkelaar A,Martin R V,Park R J.Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing[J].Journal of Geophysical Research,2006,111(D21):D21204.
[2] 中华人民共和国环境保护部.2014中国环境状况公报[EB/OL].(2015-06-06)[2016-03-01].
Ministry of Environmental Protection of the People’s Republic of China. Bulletin of China’s environmental conditions in 2014[EB/OL].(2015-06-06)[2016-03-01].
[3] Liu Y,Sarnat J A,Kilaru V,et al.Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J].Environmental Science and Technology,2005,39(9):3269-3278.
[4] Wu Y R,Guo J P,Zhang X,et al.Correlation between PM concentrations and aerosol optical depth in eastern China based on BP neural networks[C]//2011 IEEE international geoscience and remote sensing symposium.Vancouver,BC,Canada:IEEE,2011:3308-3311.
[5] Wang Z F,Chen L F,Tao J H,et al.Satellite-based estimation of regional particulate matter(PM) in Beijing using vertical-and-RH correcting method[J].Remote Sensing of Environment,2010,114(1):50-63.
[6] Lin C Q,Li Y,Yuan Z B,et al.Using Satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5[J].Remote Sensing of Environment,2015,156:117-128.
[7] 陈 辉,厉 青,王中挺,等.利用MODIS资料监测京津冀地区近地面PM2.5方法研究[J].气象与环境学报,2014,30(5):27-37.
Chen H,Li Q,Wang Z T,et al.Study on monitoring surface PM2.5 concentration in Jing-Jin-Ji regions using MODIS data[J].Journal of Meteorology and Environment,2014,30(5):27-37.
[8] 贾松林,苏 林,陶金花,等.卫星遥感监测近地表细颗粒物多元回归方法研究[J].中国环境科学,2014,34(3):565-573.
Jia S L,Su L,Tao J H,et al.A study of multiple regression method for estimating concentration of fine particulate matter using satellite remote sensing[J].China Environmental Science,2014,34(3):565-573.
[9] 徐建辉,江 洪.长江三角洲PM2.5质量浓度遥感估算与时空分布特征[J].环境科学,2015,36(9):3119-3127.
Xu J H,Jiang H.Estimation of PM2.5 concentration over the Yangtze delta using remote sensing:Analysis of spatial and temporal variations[J].Environmental Science,2015,36(9):3119-3127.
[10] 开封市政府.2015年开封市政府工作报告[EB/OL].(2015-02-25)[2015-03-01].
Kaifeng City Government. Report on the work of the Kaifeng government in 2015[EB/OL].(2015-02-25)[2015-03-01].
[11] 环境保护部.GB 3095—2012环境空气质量标准[S].北京:中国环境科学出版社,2016.
Ministry of Environmental Protection of RPC.GB 3095—2012 Ambient air quality standard[S].Beijing:China Environmental Science Press,2016.
[12] 郑 瑶,邢梦林,申 剑,等.环境空气质量新标准对郑州和开封空气质量评价的影响[J].中国环境监测,2015,31(2):35-38.
Zheng Y,Xing M L,Shen J,et al.Influence of the new national air quality standard on the air quality assessment in Zhengzhou and Kaifeng[J].Environmental Monitoring in China,2015,31(2):35-38.
[13] 白照广.高分一号卫星的技术特点[J].中国航天,2013(8):5-9.
Bai Z G.Technical characteristics of GF-1 satellite[J].Aerospace China,2013(8):5-9.
[14] 王中挺,辛金元,贾松林,等.利用暗目标法从高分一号卫星16m相机数据反演气溶胶光学厚度[J].遥感学报,2015,19(3):530-538.
Wang Z T,Xin J Y,Jia S L,et al.Retrieval of AOD from GF-1 16 m camera via DDV algorithm[J].Journal of Remote Sensing,2015,19(3):530-538.
[15] 陈 辉,厉 青,张玉环,等.基于地理加权模型的我国冬季PM2.5遥感估算方法研究[J].环境科学学报,2016,36(6):2142-2151.
Chen H,Li Q,Zhang Y H,et al.Estimations of PM2.5 concentrations based on the method of geographically weighted regression[J].Acta Scientiae Circumstantiae,2016,36(6):2142-2151.
[1] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[2] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[3] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[4] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[5] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[6] Xinghang ZHANG, Lin ZHU, Wei WANG, Lishan MENG, Xiaojuan LI, Yingchao REN. Study and application of sequential extraction method of ground fissures based on object[J]. Remote Sensing for Land & Resources, 2019, 31(1): 87-94.
[7] Nianxu XU, Qingjiu TIAN, Huaifei SHEN, Kaijian XU. Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation[J]. Remote Sensing for Land & Resources, 2018, 30(4): 28-32.
[8] Kang ZHANG, Baoqin HEI, Shengyang LI, Yuyang SHAO. Complex scene classification of remote sensing images based on CNN[J]. Remote Sensing for Land & Resources, 2018, 30(4): 49-55.
[9] WEI Yingjuan, ZHENG Xiongwei, LEI Bing, GAN Yuhang. Realization of clouds automatic extraction of GF-1 remote sensing image based on sample model[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 39-45.
[10] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
[11] ZHANG Yongmei, YANG Fei, XU Jing. An improved length variable angle chain code algorithm and its application to dock identification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 164-169.
[12] DIAO Shujuan, LIU Chunling, ZHANG Tao, HE Peng, GUO Zhaocheng, TU Jienan. Extraction of remote sensing information for lake salinity level based on SVM: A case from Badain Jaran desert in Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 114-118.
[13] DENG Zeng, LI Dan, KE Yinghai, WU Yanchen, LI Xiaojuan, GONG Huili. An improved SVM algorithm for high spatial resolution remote sensing image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(3): 12-18.
[14] LI Fuyu, YE Famao. Summarization of SIFT-based remote sensing image registration techniques[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 14-20.
[15] TAN Xiong, YU Xuchu, ZHANG Pengqiang, FU Qiongying, WEI Xiangpo, GAO Meng. Hyperspectral images classification based on MKSVM and MRF[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 42-46.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech