Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (4) : 28-32     DOI: 10.6046/gtzyyg.2018.04.05
|
Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation
Nianxu XU1,2,3, Qingjiu TIAN1,2(), Huaifei SHEN1,2, Kaijian XU1,2
1. International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
2. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing 210023, China
3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Download: PDF(2483 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Hyperspectral remote sensing can distinguish small spectrum differences between ground objects, and is expected to solve the classification problem of tree species. In this paper, by using Hyperion hyperspectral image, combined with the ground measured samples, classification of Pinus massoniana and Cunninghamia lanceolata in Wucheng of Huangshan City was conducted. With the 1st and 2nd differential transformation of the image, spectral band combination of 487~559 nm and 681~742 nm differs significantly, and hence was chosen to conduct supervised classification using support vector machine. Classification accuracy of raw, 1st and 2nd differential transformation image reaches 76.50%, 81.42% and 88.52% with Kappa coefficient being 0.528 4, 0.625 7 and 0.769 1 respectively. The results show that 2nd differential transformation and band selection of hyperspectral data can improve the classification accuracy of Pinus massoniana and Cunninghamia lanceolata, thus providing a foundation for further study of classification of coniferous forest with hyperspectral remote sensing.

Keywords hyperspectral      Hyperion      differential transformation      coniferous forest      support vector machine     
:  TP79  
Corresponding Authors: Qingjiu TIAN     E-mail: tianqj@nju.edu.cn
Issue Date: 07 December 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nianxu XU
Qingjiu TIAN
Huaifei SHEN
Kaijian XU
Cite this article:   
Nianxu XU,Qingjiu TIAN,Huaifei SHEN, et al. Classification of Pinus massoniana and Cunninghamia lanceolata using hyperspectral image based on differential transformation[J]. Remote Sensing for Land & Resources, 2018, 30(4): 28-32.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.04.05     OR     https://www.gtzyyg.com/EN/Y2018/V30/I4/28
Fig.1  Hyperion image and ground measured samples in study area
Fig.2  Reflectance spectrum of Pinus massoniana and Cunninghamia lanceolate based on Hyperion pixel
Fig.3  1stand 2nddifferential transformation reflectance spectrum of Pinus massoniana and Cunninghamia lanceolate based on Hyperion pixel
Fig.4  Classification results of Pinus massoniana and Cunninghamia lanceolate based on Hyperion
类别 杉木 马尾松 总计
原始反射率光谱 杉木 63 17 80
马尾松 26 77 103
总计 89 94 183
一阶微分光谱 杉木 61 6 67
马尾松 28 88 116
总计 89 94 183
二阶微分光谱 杉木 70 2 72
马尾松 19 92 111
总计 89 94 183
Tab.1  Accuracy statistics of raw reflectance,1st and 2nd differential transformation spectrum
类别 总体精度/% Kappa系数
原始反射率光谱 76.502 7 0.528 4
一阶微分光谱 81.420 8 0.625 7
二阶微分光谱 88.524 6 0.769 1
Tab.2  Statistical results of overall accuracy and Kappa coefficient
[1] Ballanti L, Blesius L, Hines E , et al. Tree species classification using hyperspectral imagery:A comparison of two classifiers[J]. Remote Sensing. 2016,8(6):445.
doi: 10.3390/rs8060445 url: http://www.mdpi.com/2072-4292/8/6/445
[2] George R, Padalia H , Kushwaha S P S.Forest tree species discrimination in western Himalaya using EO-1 Hyperion[J]. International Journal of Applied Earth Observation and Geoinformation. 2014,28(1):140-149.
doi: 10.1016/j.jag.2013.11.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243413001645
[3] Asadzadeh S, Roberto D S F C . A review on spectral processing methods for geological remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation. 2016,47:69-90.
doi: 10.1016/j.jag.2015.12.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243415300696
[4] 王志辉, 丁丽霞 . 基于叶片高光谱特性分析的树种识别[J]. 光谱学与光谱分析, 2010,30(7):1825-1829.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ110126000340qXt1w3
[4] Wang Z H, Ding L X . Tree species discrimination based on leaf-level hyperspectral characteristic analysis[J]. Spectroscopy and Spectral Analysis. 2010,30(7):1825-1829.
[5] Clark M L, Roberts D A, Clark D B . Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales[J]. Remote Sensing of Environment. 2005,96(3):375-398.
doi: 10.1016/j.rse.2005.03.009 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425705001082
[6] Peerbhay K Y, Mutanga O, Ismail R . Commercial tree species discrimination using airborne AISA Eagle hyperspectral imagery and partial least squares discriminant analysis (PLS-DA) in KwaZulu-Natal,South Africa[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013,79(5):19-28.
doi: 10.1016/j.isprsjprs.2013.01.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271613000439
[7] Heinzel J, Koch B . Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation[J]. International Journal of Applied Earth Observation and Geoinformation. 2012,18(18):101-110.
doi: 10.1016/j.jag.2012.01.025 url: https://linkinghub.elsevier.com/retrieve/pii/S030324341200027X
[8] Cho H, Lee K S . Comparison between hyperspectral and multispectral images for the classification of coniferous species[J]. Korean Journal of Remote Sensing. 2014,30(1):25-36.
doi: 10.7780/kjrs.2014.30.1.3 url: http://koreascience.or.kr/journal/view.jsp?kj=OGCSBN&py=2014&vnc=v30n1&sp=25
[9] 臧卓, 林辉, 孙华 , 等. 南方主要针叶树种高光谱数据降维分类研究[J] 中南林业科技大学学报, 2010,30(11):20-25.
doi: 10.3969/j.issn.1673-923X.2010.11.005 url: http://d.wanfangdata.com.cn/Periodical/znlxyxb201011005
[9] Zang Z, Lin H, Sun H , et al. Study on hyper-spectral dimension reduction and classification for main southern coniferous species[J]. Journal of Central South University of Forestry and Technology, 2010,30(11):20-25.
[10] Plaza A, Benediktsson J A, Boardman J W , et al. Recent advances in techniques for hyperspectral image processing[J]. Remote Sensing of Environment. 2009,113(1):S110-S122.
doi: 10.1016/j.rse.2007.07.028 url: http://linkinghub.elsevier.com/retrieve/pii/S0034425709000807
[11] 丁晖, 方炎明, 杨新虎 , 等. 黄山亚热带常绿阔叶林的群落特征[J]. 生物多样性, 2016,24(8):875-887.
doi: 10.17520/biods.2016108 url: http://d.wanfangdata.com.cn/Periodical/swdyx201608003
[11] Ding H, Fang Y M, Yang X H , et al. Community characteristics of a subtropical evergreen broad-leaved forest in Huangshan,Anhui Province,East China[J]. Biodiversity Science. 2016,24(8):875-887.
[12] Puletti N, Camarretta N, Corona P . Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests[J]. European Journal of Remote Sensing. 2016,49(1):157-169.
doi: 10.5721/EuJRS20164909 url: https://www.tandfonline.com/doi/full/10.5721/EuJRS20164909
[13] Scheffler D, Karrasch P. Preprocessing of hyperspectral images:A comparative study of destriping algorithms for EO1-Hyperion [C]//Proceedings of the International Society for Optical Engineering. 2013,8892(6):1504-1507.
[14] Kuusk A, Lang M, Nilson T . Simulation of the reflectance of ground vegetation in sub-boreal forests[J]. Agricultural and Forest Meteorology. 2004,126(1):33-46.
doi: 10.1016/j.agrformet.2004.05.004 url: http://linkinghub.elsevier.com/retrieve/pii/S0168192304001169
[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[6] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[7] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[8] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[9] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[10] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[11] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[12] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[13] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[14] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[15] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech