Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (4) : 59-63     DOI: 10.6046/gtzyyg.2016.04.09
Technology and Methodology |
Selection of best-fitting scale parameters in image segmentation based on multiscale segmentation image database
ZHANG Tao1, YANG Xiaomei2, TONG Liqiang1, HE Peng1
1. China Aero Geophysical Surveying and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Download: PDF(6070 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Finding the best-fitting parameters in image segmentation is of great importance for object-oriented information extraction. The try-and-error strategy and visual analysis on multiresolution segmentation are widely used in real practice, but they cannot analyze a large number of segmentation results. This paper proposes a procedure for picking segmentation parameters based on multiresolution segmentation image database and visual analysis. The experiment of multiresolution segmentation on SPOT5 image shows that the proposed procedure is capable of finding the best fitting parameters. The procedure is more efficient and effective than the traditional try-and-error strategy, and there is good potential for the procedure to be used in practical image analysis application.

Keywords remote sensing      evaportransporation(ET)      time spreading      evaporation ratio      time integration method      sinusoid method      crop coefficient method      canopy resistance     
:  TP75  
Issue Date: 20 October 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Suhua
TIAN Jing
MI Sujuan
Cite this article:   
LIU Suhua,TIAN Jing,MI Sujuan. Selection of best-fitting scale parameters in image segmentation based on multiscale segmentation image database[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 59-63.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.04.09     OR     https://www.gtzyyg.com/EN/Y2016/V28/I4/59

[1] 宫鹏,黎夏,徐冰.高分辨率影像解译理论与应用方法中的一些研究问题[J].遥感学报,2006,10(1):1-5. Gong P,Li X,Xu B.Interpretation theory and application method development for information extraction from high resolution remotely sensed data[J].Journal of Remote Sensing,2006,10(1):1-5.
[2] 孙晓霞,张继贤,刘正军.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,2006,31(1):62-63. Sun X X,Zhang J X,Liu Z J.Extracting the river and the road using an object oriented technique from IKONOS panchromatic imagery[J].Science of Surveying and Mapping,2006,31(1):62-63.
[3] Blaschke T.Object based image analysis for remote sensing[J].ISPRS Journal of Photogrammetry and Remote Sensing,2010,65(1):2-16.
[4] 李秦,高锡章,张涛,等.最优分割尺度下的多层次遥感地物分类实验分析[J].地球信息科学学报,2011,13(3):409-417. Li Q,Gao X Z,Zhang T,et al.Optimal segmentation scale selection and evaluation for multi-layer image recognition and classification[J].Journal of Geo-Information Science,2011,13(3):409-417.
[5] 于欢,张树清,孔博,等.面向对象遥感影像分类的最优分割尺度选择研究[J].中国图象图形学报,2010,15(2):352-360. Yu H,Zhang S Q,Kong B,et al.Optimal segmentation scale selection for object-oriented remote sensing image classification[J].Journal of Image and Graphics,2010,15(2):352-360.
[6] Drǎgu? L,Tiede D,Levick S R.ESP:A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data[J].International Journal of Geographical Information Science,2010,24(6):859-871.
[7] 黄慧萍.面向对象影像分析中的尺度问题研究[D].北京:中国科学院遥感应用研究所,2003. Huang H P.Scale Issues in Object-oriented Image Analysis[D].Beijing:Institute of Remote Sensing Applications,Chinese Academy of Sciences,2003.
[8] 张俊,朱国龙,李妍.面向对象高分辨率影像信息提取中的尺度效应及最优尺度研究[J].测绘科学,2011,36(2):107-109,58. Zhang J,Zhu G L,Li Y.Scale effect and optimal scale in object-oriented information extraction of high spatial resolution remote sensing image[J].Science of Surveying and Mapping,2011,36(2):107-109,58.
[9] 陈建裕,潘德炉,毛志华.高分辨率海岸带遥感影像中简单地物的最优分割问题[J].中国科学D辑:地球科学,2006,36(11):1044-1051. Chen J Y,Pan D L,Mao Z H.Optimum segmentation of simple objects in high-resolution remote sensing imagery in coastal areas[J].Science in China Series D:Earth Sciences,2006,49(11):1195-1203.
[10] 陈春雷,武刚.面向对象的遥感影像最优分割尺度评价[J].遥感技术与应用,2011,26(1):96-102. Chen C L,Wu G.Evaluation of optimal segmentation scale with object oriented method in remote sensing[J].Remote Sensing Technology and Application,2011,26(1):96-102.
[11] 鲁恒,李永树,唐敏.面向对象的山地区域多源遥感影像分割尺度选择及评价[J].山地学报,2011,29(6):688-694. Lu H,Li Y S,Tang M.Evaluation and selection of segmentation scale with object-oriented method in multiple source remote sensing image of mountain areas[J].Journal of Mountain Science,2011,29(6):688-694.
[12] 陈杰,陈铁桥,梅小明,等.基于最优尺度选择的高分辨率遥感影像丘陵农田提取[J].农业工程学报,2014,30(5):99-107. Chen J,Chen T Q,Mei X M,et al.Hilly farmland extraction from high resolution remote sensing imagery based on optimal scale selection[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(5):99-107.
[13] Benz U C,Hofmann P,Willhauck G,et al.Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J].ISPRS Journal of Photogrammetry and Remote Sensing,2004,58(3/4):239-258.

[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[13] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
[14] LIU Bailu, GUAN Lei. An improved method for thermal stress detection of coral bleaching in the South China Sea[J]. Remote Sensing for Natural Resources, 2021, 33(4): 136-142.
[15] WU Fang, JIN Dingjian, ZHANG Zonggui, JI Xinyang, LI Tianqi, GAO Yu. A preliminary study on land-sea integrated topographic surveying based on CZMIL bathymetric technique[J]. Remote Sensing for Natural Resources, 2021, 33(4): 173-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech