|
Abstract The research on the seasonal spatial and temporal distribution of precipitation is of great significance to the ecological protection and agricultural production in northeast China. Based on the correlation between vegetation index, topographical factors and precipitation, this paper utilizes deep learning models to downscale TRMM_3B43 products to 0.01° (about 1 km) in January, April, July, and October during 2009—2018, and uses site measured data to make accuracy correction and fill areas above 50 ° N which are not covered by TRMM. The results show that the model is better than random forest and can effectively obtain the precipitation distribution in the study area with higher spatial resolution and accuracy in each season. The corrected global determination coefficient R2 is between 0.881 and 0.952, the root mean square error (RMSE) is between 1.222 mm and 13.11 mm, and the mean relative error (MRE) is between 7.425% and 28.41%, among which the fitting degree is good in April and October, and relatively poor in January and July.
|
Keywords
TRMM
northeast China
NDVI
deep learning
|
|
Corresponding Authors:
SHI Yuli
E-mail: dufangzhou0101@163.com;ylshi@nuist.edu.cn
|
Issue Date: 23 December 2020
|
|
|
[1] |
Wang Q, Wang M, Fan X, et al. Trends of temperature and precipitation extremes in the Loess Plateau Region of China,1961—2010[J]. Theoretical and Applied Climatology, 2017,129(3):949-963.
|
[2] |
Xu C, Luo Y, Xu Y. Projected changes of precipitation extremes in river basins over China[J]. Quaternary International, 2011,244(2):149-158.
|
[3] |
Yu S, Xia J, Yan Z, et al. Changing spring phenology dates in the three-rivers headwater region of the Tibetan Plateau during 1960—2013[J]. Advances in Atmospheric Sciences, 2018,35(1):116-126.
|
[4] |
Huang L, Liu J, Shao Q, et al. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau[J]. Climatic Change, 2011,109(3):479-502.
|
[5] |
蒲真, 张芳玲, 古元阳, 等. 我国东北地区自然植被保护现状及保护优先区分析[J]. 生态学杂志, 2019,38(9):2821-2832.
|
[5] |
Pu Z, Zhang F L, Gu Y Y, et al. Conservation status and priority conservation areas of natural vegetation in northeast China[J]. Chinese Journal of Ecology, 2019,38(9):2821-2832.
|
[6] |
赵秀兰. 近50年中国东北地区气候变化对农业的影响[J]. 东北农业大学学报, 2010,41(9):144-149.
|
[6] |
Zhao X L. Influence of climate change on agriculture in northeast China in recent 50 years[J]. Journal of Northeast Agricultural University, 2010,41(9):144-149.
|
[7] |
房世波, 韩国军, 张新时, 等. 气候变化对农业生产的影响及其适应[J]. 气象科技进展, 2011,1(2):15-19.
|
[7] |
Fang S B, Han G J, Zhang X S, et al. Climate change affects crop production and its adaptation[J]. Advances in Meteorological Science and Technology, 2011,1(2):15-19.
|
[8] |
朱红雷, 史晓亮, 李英臣, 等. 基于SWAT模型的TRMM降水数据径流模拟适宜性评价[J]. 水土保持研究, 2017,24(5):105-112.
|
[8] |
Zhu H L, Shi X L, Li Y C, et al. Evaluation of runoff simulation using TRMM precipitation data based on SWAT model[J]. Research of Soil and Water Conservation, 2017,24(5):105-112.
|
[9] |
卢新玉, 魏鸣, 王秀琴, 等. TRMM-3B43降水产品在新疆地区的适用性研究[J]. 国土资源遥感, 2016,28(3):166-173.doi: 10.6046/gtzyyg.2016.03.26.
doi: 10.6046/gtzyyg.2016.03.26
url: http://www.gtzyyg.com/CN/abstract/abstract2025.shtml
|
[9] |
Lu X Y, Wei M, Wang X Q, et al. Applicability research on TRMM-3B43 precipitation over Xinjiang[J]. Remote Sensing for Land and Resources, 2016,28(3):166-173.doi: 10.6046/gtzyyg.2016.03.26.
|
[10] |
蔡明勇, 吕洋, 杨胜天, 等. 雅鲁藏布江流域TRMM降水数据降尺度研究[J]. 北京师范大学学报(自然科学版), 2017,53(1):111-119.
|
[10] |
Cai M Y, Lyu Y, Yang S T, et al. TRMM precipitation downscaling in the data scarce Yarlung Zangbo River Basin[J]. Journal of Beijing Normal University(Natural Science), 2017,53(1):111-119.
|
[11] |
Shi Y, Song L, Xia Z, et al. Mapping annual precipitation across mainland China in the period 2001—2010 from TRMM3B43 product using spatial downscaling approach[J]. Remote Sensing, 2015,7(5):5849-5878.
|
[12] |
徐彬仁, 魏瑗瑗. 基于随机森林算法对青藏高原TRMM降水数据进行空间统计降尺度研究[J]. 国土资源遥感, 2018,30(3):181-188.doi: 10.6046/gtzyyg.2018.03.25.
|
[12] |
Xu B R, Wei Y Y. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm[J]. Remote Sensing for Land and Resources, 2018,30(3):181-188.doi: 10.6046/gtzyyg.2018.03.25.
|
[13] |
刘小婵, 张洪岩, 赵建军, 等. 东北地区TRMM数据降尺度的GWR模型分析[J]. 地球信息科学学报, 2015,17(9):1055-1062.
|
[13] |
Liu X C, Zhang H Y, Zhao J J, et al. Spatial downscaling of TRMM precipitation data based on GWR model in northeast China[J]. Journal of Geo-Information Science, 2015,17(9):1055-1062.
|
[14] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015,521(7553):436-444.
doi: 10.1038/nature14539
pmid: 26017442
url: https://www.ncbi.nlm.nih.gov/pubmed/26017442
|
[15] |
Montavon G, Samek W, Müller K R. Methods for interpreting and understanding deep neural networks[J]. Digital Signal Processing, 2017,73:1-15.
|
[16] |
Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18(7):1527-1554.
pmid: 16764513
url: https://www.ncbi.nlm.nih.gov/pubmed/16764513
|
[17] |
Ezzine H, Bouziane A, Ouazar D, et al. Sensitivity of NDVI-based spatial downscaling technique of coarse precipitation to some mediterranean bioclimatic stages[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(9):1518-1521.
|
[18] |
Jia S, Zhu W, Lyu A, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011,115(12):3069-3079.
|
[19] |
Zhang D, Zhang W, Huang W, et al. Upscaling of surface soil moisture using a deep learning model with VIIRS RDR[J]. ISPRS International Journal of Geo-Information, 2017,6(5):130-139.
|
[20] |
邹旭东, 张飞民, 王澄海, 等. 我国东北地区冬季降水和东亚冬季风的关系研究[J]. 冰川冻土, 2013,35(6):1454-1461.
|
[20] |
Zou X D, Zhang F M, Wang C H, et al. The relationship between winter precipitation and eastern Asian winter monsoon in northeast China[J]. Journal of Glaciology and Geocryology, 2013,35(6):1454-1461.
|
[21] |
梁丰, 刘丹丹, 王婉昭, 等. 1961—2013年东北地区夏季降水变化趋势分析[J]. 水土保持研究, 2015,22(5):67-73.
|
[21] |
Liang F, Liu D D, Wang W Z, et al. Analysis on the trend of variation of summer precipitation in northeast China during the period from 1961—2013[J]. Research of Soil and Water Conservation, 2015,22(5):67-73.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|