Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 120-129     DOI: 10.6046/gtzyyg.2020.04.17
|
An improved double-branch network method for intelligently extracting marine cage culture area
ZHENG Zhiteng1(), FAN Haisheng2, WANG Jie3, WU Yanlan1,4, WANG Biao1(), HUANG Tengjie2
1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
2. Zhuhai Obit Aerospace Technology Co., Ltd., Zhuhai 519080, China
3. Geodetic Data Processing Center, Ministry of Natural Resources, Xi'an 710054, China
4. Anhui Engineering Research Center for Geographical Information Intelligent Technology, Hefei 230601, China
Download: PDF(8218 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

For the traditional remote sensing image data extraction, the accuracy of the cage information is low, and there exist the problems of “different object with the same spectrum” and “salt and salt” noise. Based on the Gaofen-2 satellite (“GF-2”) data, this paper proposes an improved double-branch network model cage information extraction method. The model uses the dense connection block to extract the spatial feature information of the cage on the spatial coding path, obtains the global context information of the cage quickly by using the global average pooling on the global coding path, and finally enriches the detailed information of the cage space through feature fusion. And deep discriminant feature information improves the extraction accuracy of the cage. The method has achieved scores of 87.37%, 72.56%, and 82.47% on the three evaluation indicators of precision, IOU, and F1, respectively, which are 7.82, 4.12, and 4.64 percentage points higher than the traditional method with the highest accuracy, respectively. The deep learning model has also achieved an increase of 8.43 and 8.69 percentage points in IOU and F1. Experiments show that the method can meet the extraction work of sea cage culture area, and can provide technical support for the regulation and regulation of offshore sea cage culture.

Keywords cage culture      remote sensing image      double-branch network      deep learning     
:  TP79  
Corresponding Authors: WANG Biao     E-mail: zhitengvip@163.com;wangbiao-rs@ahu.edu.cn
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiteng ZHENG
Haisheng FAN
Jie WANG
Yanlan WU
Biao WANG
Tengjie HUANG
Cite this article:   
Zhiteng ZHENG,Haisheng FAN,Jie WANG, et al. An improved double-branch network method for intelligently extracting marine cage culture area[J]. Remote Sensing for Land & Resources, 2020, 32(4): 120-129.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.17     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/120
Fig.1  Flow chart of network structure
Fig.2  Spatial coding path of dense connection block combination
Fig.3  Global coding path of extended semantic module combination
省份 地区 数量
福建省 莆田市 5
泉州市 7
漳州市 11
宁德市 11
广东省 阳江市 2
潮州市 7
湛江市 6
海南省 万宁市 3
陵水黎族自治区 5
Tab.1  Sample image data information(幅)
Fig.4  Samples of cage
Fig.5  Results show
影像数据 p IOU F1
影像1 89.44 83.28 90.68
影像2 91.47 74.84 84.53
影像3 88.91 66.25 78.44
影像4 79.65 65.85 76.24
平均值 87.37 72.56 82.47
Tab.2  Test accuracy(%)
方法 p IOU F1
决策树 73.36 66.00 75.89
SVM 79.55 68.44 77.83
面向对象 67.23 61.13 71.91
本文方法 87.37 72.56 82.47
Tab.3  Comparison of extraction accuracy with traditional methods(%)
Fig.6  Comparison of extraction results with traditional methods
方法 p IOU F1
U-Net 69.79 45.75 55.54
SegNet 84.02 50.74 61.93
DCCN 88.00 64.13 73.78
本文方法 87.37 72.56 82.47
Tab.4  Comparison of extraction accuracy with classic deep learning network model(%)
Fig.7  Comparison of extraction results with classic deep learning network model
[1] 张朝晖, 王波, 杨肖杰, 等. 海水网箱养殖的环境管理[J]. 海岸工程, 2006(1):97-102.
[1] Zhang Z H, Wang B, Yang X J, et al. Environmental management for marine fish cages culture[J]. Coastal Engineering, 2006(1):97-102.
[2] 沈雪达. 我国海水网箱养殖业的现状与前景分析[C]// 2008年海洋文化与海岸带经济发展研讨会论文集, 2008:178-181.
[2] Shen X D. Analysis on the current situation and prospect of sea cage aquaculture in China[C]// 2008 Symposium on Marine Culture and Coastal Economic Development, 2008:178-181.
[3] 郑晶予. 地理信息系统在水产养殖中的发展应用[J]. 河北渔业, 2011(12):55-57.
[3] Zheng J Y. Comparison and analysis of the nutrient components of Larimichthys crocea in seine net and traditional net cage[J]. Hebei Fisheries, 2011(12):55-57.
[4] 夏丽华, 刘志根, 徐珊. 柘林湾海水养殖污染负荷估算与空间特征分析[J]. 广东农业科学, 2017,44(12):151-157.
[4] Xia L H, Liu Z G, Xu S. Estim ation on pollution load and analysis on spatial characteristics of m ariculture in Zhelin Bay[J]. Guangdong Agricultural Science, 2017,44(12):151-157.
[5] 陈一波, 宋国宝, 赵文星, 等. 中国海水养殖污染负荷估算[J]. 海洋环境科学, 2016,35(1):1-6.
[5] Chen Y B, Song G B, Zhao W X, et al. Estimating pollutant loadings from mariculture in China[J]. Marine Environmental Science, 2016,35(1):1-6.
[6] 徐源璟, 张增祥, 汪潇, 等. 近30年山东省沿海养殖用地遥感监测分析[J]. 地球信息科学学报, 2014,16(3):482-489.
[6] Xu Y J, Zhang Z X, Wang X, et al. Remote sensing monitoring and analysis of coastal aquaculture land in Shandong Province in recent 30 years[J]. Journal of Earth Information Science, 2014,16(3):482-489.
[7] 樊建勇, 黄海军, 樊辉, 等. 利用RADARSAT-1数据提取海水养殖区面积[J]. 海洋科学, 2005(10):46-49.
[7] Fan J Y, Huang H J, Fan H, et al. Extracting aquaculture area with RADASAT-1[J]. Marine Sciences, 2005(10):46-49.
[8] 李新国, 江南, 杨英宝, 等. 太湖围湖利用与网围养殖的遥感调查与研究[J]. 海洋湖沼通报, 2006(1):93-99.
[8] Li X G, Jiang N, Yang Y B, et al. Remote sensing investigation and survey of lake reclamation and enclosure aquaculture in lake TaiHu[J]. Transactions of Oceanology and Limnology, 2006(1):93-99.
[9] 吴岩峻, 张京红, 田光辉, 等. 利用遥感技术进行海南省水产养殖调查[J]. 热带作物学报, 2006(2):108-111.
[9] Wu Y J, Zhang J H, Tian G H, et al. A survey to aquiculture with remote sensing technology in Hainan Province[J]. Chinese Journal of Tropical Crops, 2006(2):108-111.
[10] 马艳娟, 赵冬玲, 王瑞梅, 等. 基于ASTER数据的近海水产养殖区提取方法[J]. 农业工程学报, 2010,26(s2):120-124.
[10] Ma Y J, Zhao D L, Wang R M, et al. Offshore aquatic farming areas extraction method based on ASTER data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(s2):120-124.
[11] 初佳兰, 赵冬至, 张丰收. 基于关联规则的裙带菜筏式养殖遥感识别方法[J]. 遥感技术与应用, 2012,27(6):941-946.
[11] Chu J L, Zhao D Z, Zhang F S. Wakame raft interpretation method of remote sensing based on association rules[J]. Remote Sensing Technology and Application, 2012,27(6):941-946.
[12] 卢业伟, 李强子, 杜鑫, 等. 基于高分辨率影像的近海养殖区的一种自动提取方法[J]. 遥感技术与应用, 2015,30(3):486-494.
[12] Lu Y W, Li Q Z, Du X, et al. A method of coastal aquaculture area automatic extraction with spatial resolution images[J]. Remote Sensing Technology and Application, 2015,30(3):486-494.
[13] Rajitha K, Mukherjee C K, Chandran R V, et al. Applications of remote sensing and GIS for sustainable management of shrimp culture in India[J]. Aquacultural Engineering, 2007,36(1):1-17.
[14] 谢玉林, 汪闽, 张新月. 面向对象的海岸带养殖水域提取[J]. 遥感技术与应用, 2009,24(1):68-72.
[14] Xie Y L, Wang M, Zhang X Y. An object-oriented approach for extracting farm waters within coastal belts[J]. Remote Sensing Technology and Application, 2009,24(1):68-72.
[15] 武易天. 基于遥感影像的近海岸水产提取方法研究[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[15] Wu Y T. Research on coastal aquaculture detection using remote sensing images. Beijng:The University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences), 2017.
[16] 孙裕钰, 应警亮, 王梅, 等. 面向对象的围海养殖用海信息分类提取与动态监测研究[J]. 海洋信息, 2016(2):6-11.
[16] Sun Y Y, Ying J L, Wang M, et al. Object-oriented classification and dynamic monitoring of sea information for seawater culture[J]. Ocean Information, 2016(2):6-11.
[17] 关学彬, 张翠萍, 蒋菊生, 等. 水产养殖遥感监测及信息自动提取方法研究[J]. 国土资源遥感, 2009,21(2):44-47.doi: 10.6046/gtzyyg.2009.02.09.
[17] Guang X B, Zhang C P, Jiang J S, et al. Remote sensing monitoring of aquaculture and automatic information extraction[J]. Remote Sensing for Land and Resources, 2009,21(2):44-47.doi: 10.6046/gtzyyg.2009.02.09.
[18] 王晓轩. 基于面向对象的海岸带水产养殖模式识别[D]. 广州:广州大学, 2011.
[18] Wang X X. Recognition of aquaculture types in coastal zone based on object-oriented method[D]. Guangzhou:Guangzhou University, 2011.
[19] Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,39(4):640-651.
pmid: 27244717 url: https://www.ncbi.nlm.nih.gov/pubmed/27244717
[20] Fu G, Liu C J, Zhou R, et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sensing, 2017,9,498:1-21.
[21] Jia S, Liu H, Sun F. Aerial scene classification with convolutional neural networks[J]. Advances in Neural Networks, 2015,9377:258-265.
[22] 魏清, 艾玲梅, 叶雪娜. 一种高分辨率遥感图像道路自动提取方法[J]. 计算机技术与发展, 2019(6):130-133.
[22] Wei Q, Ai L M, Ye X N. An automatic road extraction method for high-resolution remote sensing images[J]. Computer Technology and Development, 2019(6):130-133.
[23] 贺浩, 王仕成, 杨东方, 等. 基于Encoder-Decoder网络的遥感影像道路提取方法[J]. 测绘学报, 2019,48(3):66-74.
[23] He H, Wang S C, Yang D F, et al. An road extraction method for remote sensing image based on Encoder Decoder network[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(3):66-74.
[24] Xu Y Y, Wu L, Xie Z, et al. Building extraction in very high resolution remote sensing imagery using deep learning and guided filters[J]. Remote Sensing, 2018,10(1),144:1-18.
[25] Yang H, Wu P H, Yao X D. Building extraction in very high resolution imagery by Dense-Attention networks[J]. Remote Sensing, 2018,10(11),1768:1-23.
[26] Yao X D, Yang H, Wu Y L, et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features[J]. Sensors, 2019,19(12),2792:1-16.
[27] Yu C Q, Wang J B, Peng C, et al. BiSeNet:Bilateral segmentation network for real-time semantic segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2018:1-17.
[28] Wang H Z, Wang Y, Zhang Q, et al. Gated convolutional neural network for semantic segmentation in high-resolution images[J]. Remote Sensing, 2017,9(5),446:1-15.
[29] Gao H, Liu Z, M LV D, et al. Densely connected convolutional networks[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2017:1-9.
[30] Jegou S, Drozdzal M, Vazquez D, et al. The one hundred layers tiramisu:Fully convolutional DenseNets for semantic segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2016:1-9.
[31] Li L, Jian L, Min W, et al. A multiple-feature reuse network to extract buildings from remote sensing imagery[J]. Remote Sensing. 2018,10(9):1350:651-663.
[32] Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]// Machine Learning, 2015:1-11.
[33] Chen L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation.[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2017:1-14.
[34] Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2017:1-11.
[35] Liu W, Rabinovich A, Berg A C, et al. ParseNet:Looking wider to see better[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2015:1-11.
[36] Awrangjeb M, Fraser C S. An automatic and threshold-free performance evaluation system for building extraction techniques from airborne LIDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7:4184-4198.
[37] Ronneberger O, Fischer P, Brox T, et al. U-Net:Convolutional networks for biomedical image segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2015:234-241.
[38] Badrinarayanan V, Kendall A, Cipolla R, et al. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[C]// IEEE Computer Vision and Pattern Recognition. IEEE, 2015:1-14.
[39] 王芳, 夏丽华, 陈智斌, 等. 基于关联规则面向对象的海岸带海水养殖模式遥感识别[J]. 农业工程学报, 2018,34(12):210-217.
[39] Wang F, Xia L H, Chen Z B, et al. Remote sensing identification of coastal zone mariculture modes based on association-rules object-oriented method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(12):210-217.
[1] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[2] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[3] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[4] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[5] LIU Zhizhong, SONG Yingxu, YE Runqing. An analysis of rainstorm-induced landslides in northeast Chongqing on August 31, 2014 based on interpretation of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 192-199.
[6] ZHANG Chengye, XING Jianghe, LI Jun, SANG Xiao. Recognition of the spatial scopes of tailing ponds based on U-Net and GF-6 images[J]. Remote Sensing for Natural Resources, 2021, 33(4): 252-257.
[7] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[8] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[9] FENG Dongdong, ZHANG Zhihua, SHI Haoyue. Fine extraction of urban villages in provincial capitals based on multivariate data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 272-278.
[10] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[11] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
[12] WU Yu, ZHANG Jun, LI Yixu, HUANG Kangyu. Research on building cluster identification based on improved U-Net[J]. Remote Sensing for Land & Resources, 2021, 33(2): 48-54.
[13] LU Qi, QIN Jun, YAO Xuedong, WU Yanlan, ZHU Haochen. Buildings extraction of GF-2 remote sensing image based on multi-layer perception network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 75-84.
[14] AN Jianjian, MENG Qingyan, HU Die, HU Xinli, YANG Jian, YANG Tianliang. The detection and determination of the working state of cooling tower in the thermal power plant based on Faster R-CNN[J]. Remote Sensing for Land & Resources, 2021, 33(2): 93-99.
[15] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech