Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 154-163     DOI: 10.6046/zrzyyg.2021268
|
Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images
ZHANG Shu1,2,3(), ZHOU Zhongfa1,2(), WANG Lingyu1,3, CHEN Quan1,2, LUO Jiancheng4, ZHAO Xin1,3
1. School of Geography and Environmental Science/School of Karst Science, Guizhou Normal University, Guiyang 550001, China
2. The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang 550001, China
3. State Engineering Technology Institute for Karst Desertification Control, Guiyang 550001, China
4. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(5114 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The farmland’s soil moisture plays an important role in crop yield estimation and drought monitoring and is also a key parameter for fine-scale monitoring of farmland in karst mountainous areas. Targeting the complex environmental impacts in karst regions such as farmland fragmentation and the fact that the inversion of soil moisture is vulnerable to cloud interference, this study employed both the water cloud model (WCM) and the support vector regression (SVR) model to conduct the block-scale inversion of the soil moisture in the growth periods of tobacco using the multi-temporal Sentinel-1 synthetic aperture Radar (SAR) images and the unmanned aerial vehicle (UAV) RGB images. The results are as follows. ① In this study, conventional vegetation parameters were replaced with the visible-band difference vegetation index (VDVI), which combined with its water cloud model was highly applicable to karst mountainous areas. The co-polarization method yielded higher inversion precision, with a coefficient of determination of 0.843 and RMSE of 0.983%. These provide a convenient method for the inversion of farmland’s soil moisture in cloudy and rainy mountainous areas. ② The trend of soil moisture in the four growth periods of tobacco is consistent with that of precipitation. Farmland with rocky desertification has low soil moisture, which is closely related to the bare rocks, complex terrain, and difficulties with irrigation in the experimental area. ③ Soil moisture has significant effects on tobacco growth. Specifically, high soil moisture promotes tobacco growth and low soil moisture inhibits tobacco growth, especially during T1—T3. This study can be utilized as a reference for the fine-scale inversion of the farmland’s soil moisture in cloudy and rainy mountainous areas.

Keywords soil moisture      farmland parcel      water cloud model      SAR      Sentinel-1      UAV remote sensing      tobacco growth period     
ZTFLH:  TP79  
Corresponding Authors: ZHOU Zhongfa     E-mail: zhangshu260@163.com;fa6897@163.com
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shu ZHANG
Zhongfa ZHOU
Lingyu WANG
Quan CHEN
Jiancheng LUO
Xin ZHAO
Cite this article:   
Shu ZHANG,Zhongfa ZHOU,Lingyu WANG, et al. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021268     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/154
Fig.1  Location of study area and samples
数据类型 空间分辨率/m 数据来源 用途
Sentinel-1A 5×20 欧洲航天局 提取后向散射系数
Google Earth RGB影像 0.538 Google Earth
Engine
提取耕地地块
UAV 0.032 航摄相片 计算VWC
实测数据 地面实测 建立样本的测试集和训练集
Tab.1  Dataset list of soil moisture content inversion
生长期 成像时间 平均入射角/(°) 成像模式 极化方式
T1 2020-05-29 40.386 IW1 VV,VH
T2 2020-06-23 40.410 IW1 VV,VH
T3 2020-07-28 40.167 IW1 VV,VH
T4 2020-09-02 40.411 IW1 VV,VH
Tab.2  Sentinel-1 data acquisition situation
生长期 株高/m 叶片数/个 叶展/m LAI
T1 0.173 3 0.226 0.097
T2 0.671 15 0.823 1.657
T3 1.088 11 1.028 1.447
T4 0.966 3 0.445 0.488
Tab.3  Basic data on different growth periods of tobacco
Fig.2  Technology roadmap
Fig.3  Comparison of measured and estimated soil moisture
Fig.4  Data distribution of soil moisture measured, estimated values and error values in 180 measured sample plots
Fig.5  Statistic on result of soil moisture in study area
Fig.6  Statistics of soil moisture for different growth stages of tabacco
Fig.7  Soil moisture in the experimental areas of tobacco at different growth periods
烟草生
长数据
土壤含水量
T1 T2 T3 T4
株高 -0.132 0.598** -0.221 0.535**
叶展 -0.466*① 0.401* 0.279 -0.250
叶片数 0.147 0.263 0.279 -0.466*
LAI -0.385 -0.087 0.171 -0.596**
Tab.4  Correlation coefficients between soil moisture and plant height, leaf length, leaves, LAI during different growth periods of tobacco
Fig.8  Soil moisture and plant height, leaf length, leaves, LAI change process during different growth periods of tobacco
[1] Anagnostopoulos V, Petropoulos G P, Ireland G, et al. A modernized version of a 1D soil vegetation atmosphere transfer model for improving its future use in land surface interactions studies[J]. Environmental Modelling and Software, 2017(90):147-156.
[2] Bolten J D, Crow W T, Zhan X, et al. Evaluating the utility of remotely sensed soil moisture retrievals for operational agricultural drought monitoring[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1):57-66.
doi: 10.1109/JSTARS.2009.2037163 url: https://ieeexplore.ieee.org/document/5353747/
[3] Mccoll K A, Alemohammad S H, Akbar R, et al. The global distribution and dynamics of surface soil moisture[J]. Nature Geoence, 2017, 10(2):100-104.
[4] 罗占春, 杜伟, 张卫星. 土壤水分与烟草生长发育和生理代谢的相关研究进展[J]. 山地农业生物学报, 2009, 28(5):446-451.
[4] Luo Z C, Du W, Zhang W X. The progress on the effect of soil water on growth and development and physiological metabolism of Tobacco[J]. Journal of Mountain Agriculture and Biology, 2009, 28(5):446-451.
[5] Al Y A, Wigneron J P, Ducharne A, et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates[J]. Remote Sensing of Environment, 2014, 149(1): 181-195.
doi: 10.1016/j.rse.2014.04.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714001448
[6] Hajnsek I, Jagdhuber T, Schcoen H, et al. Potential of estimating soil moisture under vegetation cover by means of PolSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 442-454.
doi: 10.1109/TGRS.2008.2009642 url: http://ieeexplore.ieee.org/document/4773468/
[7] Trudel M, Charbonneau F, Leconte R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields[J]. Canadian Journal of Remote Sensing, 2012, 38(4): 514-527.
[8] Ulaby F T, Sarabandl K, Mcdonald K. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990, 11(7):1223-1253.
doi: 10.1080/01431169008955090 url: https://www.tandfonline.com/doi/full/10.1080/01431169008955090
[9] Joseph A T, Van d V R, O’Neill P E, et al. Soil moisture retrieval during a corn growth cycle using L-cand (1.6 GHz) Radar observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2365-2374.
doi: 10.1109/TGRS.2008.917214 url: http://ieeexplore.ieee.org/document/4578823/
[10] De Roo R D, Du Y, Ulaby F T, et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 864-872.
doi: 10.1109/36.917912 url: http://ieeexplore.ieee.org/document/917912/
[11] Attema E P W, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2):357-364.
doi: 10.1029/RS013i002p00357 url: http://doi.wiley.com/10.1029/RS013i002p00357
[12] 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-159.
[12] Wang X Q, Wang M M, Wang S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):152-159.
[13] 丁雷龙, 李强子, 杜鑫, 等. 基于无人机图像颜色指数的植被识别[J]. 国土资源遥感, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
[13] Ding L L, Li Q Z, Du X, et al. Vegetation extraction method based on color indices from UAV images[J]. Remote Sensing for Land and Resources, 2016, 28(1):78-86.doi: 10.6046/gtzyyg.2016.01.12.
doi: 10.6046/gtzyyg.2016.01.12
[14] 朱孟, 周忠发, 蒋翼, 等. 基于可见光波段无人机遥感的火龙果精准识别方法[J]. 激光与光电子学进展, 2020, 57(14):359-368.
[14] Zhu M, Zhou Z F, Jiang Y, et al. An accurate recognition method of pitaya plants based on visible light band UAV remote sensing[J]. Laser and Optoelectronics Progress, 2020, 57(14):359-368.
[15] 李朝阳, 王普, 潘方博. 利用主动微波遥感数据监测土壤墒情方法[J]. 南水北调与水利科技, 2017, 15(2):224-228,253.
[15] Li C Y, Wang P, Pan F B. Using active microwave remote sensing data to detect soil moisture[J]. South-to-North Water Transfers and Water Science and Technology, 2017, 15(2):224-228,253.
[16] Kim Y, van Zyl J J. A time-series approach to estimate soil moisture using polarimetric Radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2519-2527.
doi: 10.1109/TGRS.2009.2014944 url: http://ieeexplore.ieee.org/document/4810143/
[17] 张祥, 陈报章, 赵慧, 等. 基于时序Sentinel-1A数据的农田土壤水分变化检测分析[J]. 遥感技术与应用, 2017, 32(2):338-345.
[17] Zhang X, Chen B Z, Zhao H, et al. Soil moisture change detection over bare agricultural area by means of time-series Sentinel-1A SAR data[J]. Remote Sensing Technology and Application, 2017, 32(2):338-345.
[18] 姜红, 玉素甫江·如素力, 拜合提尼沙·阿不都克日木, 等. 基于支持向量机回归算法的土壤水分光学与微波遥感协同反演[J]. 地理与地理信息科学, 2017, 33(6):30-36.
[18] Jiang H, Yusufujiang R, Baihetinisha A, et al. Soil moisture retrieval by synergizing optical and microwave remote sensing data based on support vector machine regression algorithm[J]. Geography and Geo-Information Science, 2017, 33(6):30-36.
[19] 杨贵军, 岳继博, 李长春, 等. 基于改进水云模型和Radarsat-2数据的农田土壤含水量估算[J]. 农业工程学报, 2016, 32(22):146-153.
[19] Yang G J, Yue J B, Li C C, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22):146-153.
[20] 郭交, 刘健, 宁纪锋, 等. 基于Sentinel多源数据的农田地表土壤水分反演模型构建与验证[J]. 农业工程学报, 2019, 35(14):71-78.
[20] Guo J, Liu J, Ning J F, et al. Construction and validation of soil moisture retrieval model in farmland based on Sentinel multi-source data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(14):71-78.
[21] 黄启厅, 曾志康, 谢国雪, 等. 基于高时空分辨率遥感数据协同的作物种植结构调查[J]. 南方农业学报, 2017, 48(3):552-560.
[21] Huang Q T, Zeng Z K, Xie G X, et al. Investigation on crop planting structure based on synergy of high spatial-temporal resolution remote sensing data[J]. Journal of Southern Agriculture, 2017, 48(3):552-560.
[22] 赵馨, 周忠发, 王玲玉, 等. 喀斯特山区石漠化耕地遥感精准提取与分析——以贵州省北盘江镇与花江镇为例[J]. 热带地理, 2020, 40(2):289-302.
doi: 10.13284/j.cnki.rddl.003233
[22] Zhao X, Zhou Z F, Wang L Y, et al. Extraction and analysis of cultivated land experiencing rocky desertification in Karst mountain areas based on remote sensing:A case study of Beipanjiang Town and Huajiang Town in Guizhou Province[J]. Tropical Geography, 2020, 40 (2):289-302.
doi: 10.13284/j.cnki.rddl.003233
[23] 王玲玉, 陈全, 吴跃, 等. 基于地块级时序NDVI的喀斯特山区撂荒地特征精准识别[J]. 国土资源遥感, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
doi: 10.6046/gtzyyg.2020.03.04
[23] Wang L Y, Chen Q, Wu Y, et al. Accurate recognition and extraction of Karst abandoned land features based on cultivated land parcels and time series NDVI[J]. Remote Sensing for Land and Resources, 2020, 32(3):23-31.doi: 10.6046/gtzyyg.2020.03.04.
doi: 10.6046/gtzyyg.2020.03.04
[24] 刘巍, 吴志峰, 骆剑承, 等. 深度学习支持下的丘陵山区耕地高分辨率遥感信息分区分层提取方法[J]. 测绘学报, 2021, 50(1):105-116.
[24] Liu W, Wu Z F, Luo J C, et al. A divided and stratified extraction method of high-resolution remote sensing information for cropland in hilly and mountainous areas based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1):105-116.
[25] Bindlish R, Barros A P. Parameterization of vegetation backscatter in Radar-based,soil moisture estimation[J]. Remote Sensing of Environment, 2001, 76(1):130-137.
doi: 10.1016/S0034-4257(00)00200-5 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425700002005
[26] Jackson T J, Schmugge T J. Vegetation effects on the microwave emission of soils[J]. Remote Sensing of Environment, 1991, 36(3): 203-212.
doi: 10.1016/0034-4257(91)90057-D url: https://linkinghub.elsevier.com/retrieve/pii/003442579190057D
[27] 刘万侠, 王娟, 刘凯, 等. 植被覆盖地表主动微波遥感反演土壤水分算法研究[J]. 热带地理, 2007(5):411-415,450.
[27] Liu W X, Wang J, Liu K, et al. Soil moisture data retrieval by active microwave remote sensing on vegetative land[J]. Tropical geo-graphy, 2007(5):411-415,450.
[28] 陈全, 周忠发, 王玲玉, 等. 基于多时相Sentinel-1 SAR数据的喀斯特石漠化区地表土壤水分反演研究[J]. 红外与毫米波学报, 2020, 39(5):626-634.
[28] Chen Q, Zhou Z F, Wang L Y, et al. Surface soil moisture retrieval using multi-temporal Sentinel-1 SAR data in Karst rocky desertification area[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5):626-634.
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[3] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[4] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[5] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[6] GUO Xiaomeng, FANG Xiuqin, YANG Lulu, CAO Yu. Artificial neural network-based estimation of root zone soil moisture in the western Liaohe river basin[J]. Remote Sensing for Natural Resources, 2023, 35(2): 193-201.
[7] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[8] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[9] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[10] HE Binfang, YAO Yun, FENG Yan, LIU Huimin, DAI Juan. Sentinel-1A based flood inundation monitoring in Anhui Province during the plum rain period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1): 140-147.
[11] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[12] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[13] FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence[J]. Remote Sensing for Natural Resources, 2023, 35(1): 99-106.
[14] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
[15] WANG Yu, ZHOU Zhongfa, WANG Lingyu, LUO Jiancheng, HUANG Denghong, ZHANG Wenhui. Sentinel-1-based spatial differentiation study of the planting structures in Karst plateau mountainous areas[J]. Remote Sensing for Natural Resources, 2022, 34(4): 155-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech