Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 212-220     DOI: 10.6046/zrzyyg.2022240
|
Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors
WANG Yelan1(), YANG Xin1,2(), HAO Lina1
1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
2. Key Laboratory of Earth Exploration and Information Technology, Ministry of Education, Chengdu 610059, China
Download: PDF(4210 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The western Sichuan Plateau, with a fragile and sensitive ecological environment, acts as a critical ecological barrier between the Qinghai-Tibet Plateau and the Sichuan Basin. Research on the dynamic changes in the normalized difference vegetation index (NDVI) and their driving factors holds practical significance for monitoring the ecological environment quality of the western Sichuan Plateau. Based on 2001—2021 MODIS NDVI data, as well as meteorological data, surface factor data, and human activity data, this study analyzed the NDVI distribution of vegetation in the western Sichuan Plateau on a spatio-temporal scale using trend analysis, Hurst index, and geographical detector. Furthermore, this study determined the principal driving factors in NDVI changes. The results are as follows: During 2001—2021, the NDVI of 67.19% of regional vegetation in the western Sichuan Plateau showed a fluctuating upward trend. Elevation is the most critical factor influencing NDVIs, with an explanatory power of 0.529. The elevation is followed by accumulated temperature ≥0 ℃ and air temperature. The driving factors in interactions among NDVI exhibited nonlinear or double-factor enhancement, with q values between relative humidity and elevation being highest (0.623). 84% of factor combinations showed significantly different effects on the spatial NDVI distribution in the western Sichuan Plateau. The results of this study facilitate the research on the driving mechanism of vegetation growth, providing a reference for vegetation protection in the western Sichuan Plateau.

Keywords western Sichuan Plateau      NDVI      geographical detector      spatio-temporal change      driving factor     
ZTFLH:  TP79  
  Q948  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yelan WANG
Xin YANG
Lina HAO
Cite this article:   
Yelan WANG,Xin YANG,Lina HAO. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022240     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/212
Fig.1  Location of the study area
类型 影响因子
气象因子 气温(X1) 降水量(X2) 相对湿度(X3)
日照(X4) ≥0 ℃积温
(X5)
≥10 ℃积温
(X6)
地表因子 高程(X7) 坡度(X8) 坡向(X9)
地貌类型
(X10)
植被类型
(X11)
土壤类型
(X12)
人类活动因子 人口密度
(X13)
GDP(X14)
Tab.1  Indicators of impact factors
数据类型 数据来源 产品 分辨率 预处理
NDVI 美国国家航空航天局 MOD13Q1 16 d,250 m 利用MRT软件和ArcGIS软件进行格式转换、重投影、裁剪、重采样及最大值合成法合成不同时间尺度的NDVI数据集(可有效消除云、雾的影响)
气象数据 中国气象数据网(http://data.cma.cn) 中国地面气候资料日值数据集: 气温、降水量、相对湿度和日照 研究区及周边的69个气象台站 利用AUNSPLIN软件以海拔为协变量对气象数据进行插值生成1 km空间分辨率栅格数据[19]
≥0 ℃积温、≥10 ℃积温 中国科学院资源科学与数据中心(http://www.resdc.cn) 中国气象背景数据集 500 m 利用ArcGIS软件进行裁剪及重采样
高程、坡度、坡向 地理空间数据云(http://www.gscloud.cn) 数字高程模型 250 m 利用ArcGIS软件进行裁剪拼接和重采样
地貌类型 中国科学院资源科学与数据中心(http://www.resdc.cn) 中华人民共和国地貌图集(1∶100万) 1 km
植被类型 中国科学院资源科学与数据中心(http://www.resdc.cn) 《1∶100万中国植被图集》 1 km
土壤类型 中国科学院资源科学与数据中心(http://www.resdc.cn) 《1∶100万中华人民共和国土壤图》 1 km
人口密度、GDP 四川省统计局(http://tjj.sc.gov.cn) 四川省统计年鉴 利用ArcGIS软件基于各行政单元进行计算
Tab.2  Data source and preprocessing
Fig.2  Mean value of NDVI in western Sichuan Plateau from 2001 to 2021
植被NDVI等级 2021年 合计 转出
低植被覆盖度 中低植被覆盖度 中植被覆盖度 中高植被覆盖度 高植被覆盖度
2001
低植被覆盖度 20.99 13.11 1.92 0.47 0.20 36.69 15.70
中低植被覆盖度 3.11 38.10 29.77 4.50 0.84 76.32 38.22
中植被覆盖度 0.42 11.11 92.58 98.30 6.91 209.32 116.74
中高植被覆盖度 0.14 1.81 25.62 562.62 409.07 999.26 436.64
高植被覆盖度 0.06 0.50 2.75 98.40 912.15 1 013.86 101.71
合计 24.72 64.63 152.64 764.29 1 329.17 2 335.45
转入 3.73 26.53 60.06 201.67 417.02
变化量 -11.97 -11.69 -56.68 -234.97 315.31
Tab.3  NDVI change transition matrix in western Sichuan Plateau from 2001 to 2021 (102 km2)
Fig.3  Temporal scale NDVI variation trend of the western Sichuan Plateau from 2001 to 2021
Fig.4  Variation trend and persistence of NDVI in western Sichuan Plateau
NDVI趋势变化 面积百分比
春季 夏季 秋季 冬季 年际
显著退化 0.98 1.43 2.10 1.72 1.40
不显著退化 13.05 15.39 24.91 15.85 15.03
稳定不变 9.57 16.70 14.05 16.84 16.38
不显著改善 55.76 48.47 47.05 38.68 48.42
显著改善 20.64 18.01 11.89 26.91 18.77
Tab.4  Area proportion of significant NDVI changes in the western Sichuan Plateau(%)
因子 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
q 0.392 0.077 0.049 0.057 0.395 0.087 0.529 0.013 0.006 0.087 0.242 0.172 0.025 0.026
Tab.5  The q values of the influencing factors
因子 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14
X1 0.392
X2 0.483 0.077
X3 0.556 0.145 0.049
X4 0.529 0.193 0.140 0.057
X5 0.462 0.452 0.481 0.481 0.395
X6 0.400 0.153 0.142 0.156 0.398 0.087
X7 0.576 0.609 0.623 0.613 0.591 0.541 0.529
X8 0.442 0.095 0.085 0.083 0.420 0.098 0.555 0.013
X9 0.413 0.095 0.068 0.073 0.406 0.097 0.540 0.031 0.006
X10 0.537 0.218 0.198 0.185 0.458 0.177 0.586 0.126 0.101 0.087
X11 0.499 0.308 0.288 0.307 0.463 0.289 0.575 0.261 0.259 0.301 0.242
X12 0.444 0.232 0.218 0.227 0.442 0.199 0.562 0.182 0.183 0.257 0.323 0.172
X13 0.478 0.101 0.100 0.089 0.437 0.115 0.585 0.051 0.043 0.156 0.273 0.199 0.025
X14 0.487 0.117 0.098 0.091 0.435 0.117 0.608 0.053 0.041 0.159 0.279 0.203 0.046 0.026
Tab.6  Interaction of influencing factors and ecological exploration
因子 NDVI适宜类型或范围 NDVI均值
气温/℃ 5.89~8.26 0.827
降水/mm 78.83~89.93 0.862
≥0 ℃积温/℃ 2 257.4~2 732.5 0.840
≥10 ℃积温/℃ 771.9~1 270.8 0.837
高程/m 1 990~ 2 566 0.840
地貌类型 中起伏山 0.782
植被类型 草丛 0.916
土壤类型 棕壤、黄棕壤、暗棕壤、黄褐土 0.838
Tab.7  Suitable type or range of impact factors
Fig.5  Trends in climate factors
[1] 赵丽娅, 赵哈林. 我国沙漠化过程中的植被演替研究概述[J]. 中国沙漠, 2000(s1):8-15.
[1] Zhao L Y, Zhao H L. Overview of vegetation succession in the process of desertification in China[J]. Journal of Desert Research, 2000(s1):8-15.
[2] 李玉山. 黄土高原森林植被对陆地水循环影响的研究[J]. 自然资源学报, 2001(5):427-432.
[2] Li Y S. Study on the influence of forest vegetation on land water cycle in the Loess Plateau[J]. Journal of Natural Resources, 2001 (5):427-432.
[3] 李钰溦, 贾坤, 魏香琴, 等. 中国北方地区植被覆盖度遥感估算及其变化分析[J]. 国土资源遥感, 2015, 27(2):112-117.doi:10.6046/gtzyyg.2015.02.18.
doi: 10.6046/gtzyyg.2015.02.18
[3] Li Y W, Gu K, Wei X Q, et al. Analysis of remote sensing estimation of vegetation coverage and its change in northern China[J]. Remote Sensing for Land and Resources, 2015, 27(2):112-117.doi:10.6046/gtzyyg.2015.02.18.
doi: 10.6046/gtzyyg.2015.02.18
[4] 郑朝菊, 曾源, 赵玉金, 等. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
doi: 10.6046/gtzyyg.2017.03.19
[4] Zheng C J, Zeng Y, Zhao Y J, et al. Dynamic changes of vegetation coverage in southwest China in recent 15 years[J]. Remote Sensing for Land and Resources, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
doi: 10.6046/gtzyyg.2017.03.19
[5] 张含玉, 方怒放, 史志华. 黄土高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报, 2016, 36(13):3960-3968.
[5] Zhang H Y, Fang N F, Shi Z H. Spatial-temporal variation of vegetation cover and its response to climate factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2016, 36(13):3960-3968.
[6] 刘宪锋, 任志远, 林志慧, 等. 2000—2011年三江源区植被覆盖时空变化特征[J]. 地理学报, 2013, 68(7):897-908.
[6] Liu X F, Ren Z Y, Lin Z H, et al. Spatial-temporal variation of vegetation cover in the headwaters of the Three Rivers from 2000 to 2011[J]. Acta Geographica Sinica, 2013, 68(7):897-908.
[7] 严恩萍, 林辉, 党永峰, 等. 2000—2012年京津风沙源治理区植被覆盖时空演变特征[J]. 生态学报, 2014, 34(17):5007-5020.
[7] Yan E P, Lin H, Dang Y F, et al. Spatial-temporal evolution of vegetation cover in Beijing-Tianjin sandstorm source control area from 2000 to 2012[J]. Acta Ecologica Sinica, 2014, 34(17):5007-5020.
[8] 赵婷, 白红英, 邓晨晖, 等. 2000—2016年秦岭山地植被覆盖变化地形分异效应[J]. 生态学报, 2019, 39(12):4499-4509.
[8] Zhao T, Bai H Y, Deng C H, et al. Topographic differentiation effect of vegetation cover change in the Qinling Mountains from 2000 to 2016[J]. Acta Ecologica Sinica, 2019, 39(12):4499-4509.
[9] 张英洁, 靳英华, 谷晓楠, 等. 长白山苔原带植被变化与土壤微生物、酶活性及土壤肥力的相关性[J]. 生态学杂志, 2017, 36(11):3086-3093.
[9] Zhang Y J, Jin Y H, Gu X N, et al. Correlation between vegetation change and soil microorganisms,enzyme activities and soil fertility in tundra belt of Changbai Mountain[J]. Chinese Journal of Ecology, 2017, 36(11):3086-3093.
[10] 彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9):1758-1776.
doi: 10.11821/dlxb201909005
[10] Peng W F, Zhang D M, Luo Y M, et al. Geographical detection of NDVI changes by natural factors in Sichuan Province[J]. Acta Geographica Sinica, 2019, 74(9):1758-1776.
[11] 郑勇, 杨武年, 刘冲, 等. 川西高原近20 a植被覆盖变化遥感动态监测及驱动力分析[J]. 遥感技术与应用, 2020, 35(6):1447-1456.
[11] Zheng Y, Yang W N, Liu C, et al. Remote sensing dynamic monitoring and driving force analysis of vegetation cover change in Western Sichuan Plateau in recent 20 years[J]. Remote Sensing Technology and Application, 2020, 35(6):1447-1456.
[12] 谢慧君, 张廷斌, 易桂花, 等. 川西高原植被NDVI动态变化特征及对气候因子的响应[J]. 水土保持通报, 2020, 40(4):286-294,328,2.
[12] Xie H J, Zhang T B, Yi G H, et al. Dynamic changes of vegetation NDVI in the western Sichuan Plateau and its response to climatic factors[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):286-294,328,2.
[13] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
[13] Wang J F, Xu C D. Geodetectors:Principle and prospect[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
[14] 王伟, 阿里木·赛买提, 吉力力·阿不都外力. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4):32-40.doi:10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
[14] Wang W, Alimu S, Jilili A. Spatial and temporal variation characteristics and driving factors of NDVI in Central Asia based on geographic detector model[J]. Remote Sensing for Land and Resources, 2019, 31(4):32-40.doi:10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
[15] 付含培, 王让虎, 王晓军. 1999—2018年黄河流域NDVI时空变化及驱动力分析[J]. 水土保持研究, 2022, 29(2):145-153,162.
[15] Fu H P, Wang R H, Wang X J. Spatial-temporal variation and driving forces of NDVI in the Yellow River basin from 1999 to 2018[J]. Research of Soil and Water Conservation, 2022, 29(2):145-153,162.
[16] 祝聪, 彭文甫, 张丽芳, 等. 2006—2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 2019, 39(5):1583-1594.
[16] Zhu C, Peng W F, Zhang L F, et al. Spatio-temporal variation and driving forces of vegetation coverage in the upper reaches of Minjiang River from 2006 to 2016[J]. Acta Ecologica Sinica, 2019, 39(5):1583-1594.
[17] 张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8):2530-2540.
[17] Zhang H, Li M, Song J Y, et al. Driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detectors[J]. Chinese Journal of Ecology, 2021, 40(8):2530-2540.
[18] 张思源, 聂莹, 张海燕, 等. 基于地理探测器的内蒙古植被NDVI时空变化与驱动力分析[J]. 草地学报, 2020, 28(5):1460-1472.
doi: 10.11733/j.issn.1007-0435.2020.05.034
[18] Zhang S Y, Nie Y, Zhang H Y, et al. Spatio-temporal variation and driving force analysis of vegetation NDVI in Inner Mongolia based on geographic detectors[J]. Acta Grassland Sinica, 2020, 28(5):1460-1472.
[19] 姜晓剑, 刘小军, 黄芬, 等. 逐日气象要素空间插值方法的比较[J]. 应用生态学报, 2010, 21(3):624-630.
[19] Jiang X J, Liu X J, Huang F, et al. Comparison of spatial interpolation methods for daily meteorological elements[J]. Chinese Journal of Applied Ecology, 2010, 21(3):624-630.
[20] 袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 2013, 33(24):7798-7806.
[20] Yuan L H, Jiang W G, Shen W M, et al. Spatial-temporal changes of vegetation cover in the Yellow River Basin from 2000 to 2010[J]. Acta Ecologica Sinica, 2013, 33(24):7798-7806.
[21] Lunetta R S, Knight J F, Ediriwickrema J, et al. Land-cover change detection using multi-temporal MODIS NDVI data[J]. Remote Sensing of Environment, 2006, 105(2):142-154.
doi: 10.1016/j.rse.2006.06.018 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706002549
[22] 蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13(6):1170-1186.
[22] Cai B F, Yu R. Research progress and evaluation of long time series trend characteristics of vegetation based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6):1170-1186.
[23] 范娜, 谢高地, 张昌顺, 等. 2001年至2010年澜沧江流域植被覆盖动态变化分析[J]. 资源科学, 2012, 34(7):1222-1231.
[23] Fan N, Xie G D, Zhang C S, et al. Dynamic change of vegetation cover in Lancang River basin from 2001 to 2010[J]. Resources Science, 2012, 34(7):1222-1231.
[24] 左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4):686-694.
doi: 10.16258/j.cnki.1674-5906.2020.04.006
[24] Zuo L Y, Gao J B. Quantitative attribution of NPP of Karst vegetation based on geographic detector[J]. Journal of Eco-Environment, 2020, 29(4):686-694.
[25] 徐勇, 郑志威, 郭振东, 等. 2000—2020年长江流域植被NDVI动态变化及影响因素探测[J]. 环境科学, 2022(7):3730-3740.
[25] Xu Y, Zheng Z W, Guo Z D, et al. Dynamic changes and influencing factors of vegetation NDVI in the Yangtze River basin from 2000 to 2020[J]. Environmental Science, 2022(7):3730-3740.
[26] 孟琪, 武志涛, 杜自强, 等. 基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021, 41(2):826-836.
[26] Meng Q, Wu Z T, Du Z Q, et al. Quantitative impacts of regional vegetation coverage based on geographic detectors:A case study of the Beijing-Tianjin aeolian sand source area[J]. China Environmental Science, 2021, 41(2):826-836.
[27] 荣欣, 易桂花, 张廷斌, 等. 2000—2015年川西高原植被EVI海拔梯度变化及其对气候变化的响应[J]. 长江流域资源与环境, 2019, 28(12):3014-3028.
[27] Rong X, Yi G H, Zhang T B, et al. Changes of EVI gradient and its response to climate change in the western Sichuan Plateau from 2000 to 2015[J]. Resources and Environment in the Yangtze Basin, 2019, 28(12):3014-3028.
[28] 郑朝菊, 曾源, 赵玉金, 等. 20世纪90年代以来中国西南地区土地覆被变化[J]. 生态学报, 2016, 36(23):7858-7869.
[28] Zheng C J, Zeng Y, Zhao Y J, et al. Land cover change in southwest China since the 1990s[J]. Acta Ecologica Sinica, 2016, 36(23):7858-7869.
[29] 朱昌丽, 张继飞, 赵宇鸾, 等. 青藏高原东缘典型流域生态系统服务的地形梯度效应——以岷江上游为例[J]. 长江流域资源与环境, 2017, 26(10):1687-1699.
[29] Zhu C L, Zhang J F, Zhao Y L, et al. Topographic gradient effects of ecosystem services in a typical watershed in the eastern margin of the Qinghai-Tibet Plateau:A case study of the upper Minjiang River[J]. Resources and Environment in the Yangtze Basin, 2017, 26(10):1687-1699.
[30] Chen T, Feng Z, Zhao H, et al. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas[J]. Science of the Total Environment, 2019, 711(2):134687.
doi: 10.1016/j.scitotenv.2019.134687 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969719346789
[1] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[2] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[3] WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020[J]. Remote Sensing for Natural Resources, 2022, 34(4): 225-234.
[4] LIN Xuemin, LI Weifeng, WANG Hong, MING Dongping, HAN Lijian. Analysis of the groundwater storage variations and their driving factors in the three eastern coastal urban agglomerations of China[J]. Remote Sensing for Natural Resources, 2022, 34(4): 262-271.
[5] ZHANG Siyuan, YUE Chu, YUAN Guoli, YUAN Shuai, PANG Wenqiang, LI Jun. Salinization inversion model based on ENDVI-SI3 characteristic space and risk assessment[J]. Remote Sensing for Natural Resources, 2022, 34(4): 136-143.
[6] CHEN Yanying, MA Xincheng, XU Yanping, WANG Ying, WANG Yanbo. Methods for the application of topography and NDVI in re-identification of remote sensing-based monitoring of forest fires[J]. Remote Sensing for Natural Resources, 2022, 34(3): 88-96.
[7] ZENG Hui, REN Huazhong, ZHU Jinshun, GUO Jinxin, YE Xin, TENG Yuanjian, NIE Jing, QIN Qiming. Impacts of the Syrian Civil War on vegetation[J]. Remote Sensing for Natural Resources, 2022, 34(3): 121-128.
[8] ZHU Sijia, FENG Huihui, ZOU Bin, YE Shuchao. Spatial-temporal characteristics of 2000—2019 vegetation NPP of the Dongting Lake basin and their driving factors[J]. Remote Sensing for Natural Resources, 2022, 34(3): 196-206.
[9] LI Jingzhi, WANG Miao, FENG Wenjing, LI Bin. The characteristics and driving factors of spatiotemporal changes in the ecosystem service value in Xiangxi, Hunan, China[J]. Remote Sensing for Natural Resources, 2022, 34(3): 207-217.
[10] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[11] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[12] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[13] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[14] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[15] PAN Meng, CAO Yungang. Present status and perspectives of remote sensing survey of glacial lakes in High Asia[J]. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech