|
Abstract The western Sichuan Plateau, with a fragile and sensitive ecological environment, acts as a critical ecological barrier between the Qinghai-Tibet Plateau and the Sichuan Basin. Research on the dynamic changes in the normalized difference vegetation index (NDVI) and their driving factors holds practical significance for monitoring the ecological environment quality of the western Sichuan Plateau. Based on 2001—2021 MODIS NDVI data, as well as meteorological data, surface factor data, and human activity data, this study analyzed the NDVI distribution of vegetation in the western Sichuan Plateau on a spatio-temporal scale using trend analysis, Hurst index, and geographical detector. Furthermore, this study determined the principal driving factors in NDVI changes. The results are as follows: During 2001—2021, the NDVI of 67.19% of regional vegetation in the western Sichuan Plateau showed a fluctuating upward trend. Elevation is the most critical factor influencing NDVIs, with an explanatory power of 0.529. The elevation is followed by accumulated temperature ≥0 ℃ and air temperature. The driving factors in interactions among NDVI exhibited nonlinear or double-factor enhancement, with q values between relative humidity and elevation being highest (0.623). 84% of factor combinations showed significantly different effects on the spatial NDVI distribution in the western Sichuan Plateau. The results of this study facilitate the research on the driving mechanism of vegetation growth, providing a reference for vegetation protection in the western Sichuan Plateau.
|
Keywords
western Sichuan Plateau
NDVI
geographical detector
spatio-temporal change
driving factor
|
|
Issue Date: 19 September 2023
|
|
|
[1] |
赵丽娅, 赵哈林. 我国沙漠化过程中的植被演替研究概述[J]. 中国沙漠, 2000(s1):8-15.
|
[1] |
Zhao L Y, Zhao H L. Overview of vegetation succession in the process of desertification in China[J]. Journal of Desert Research, 2000(s1):8-15.
|
[2] |
李玉山. 黄土高原森林植被对陆地水循环影响的研究[J]. 自然资源学报, 2001(5):427-432.
|
[2] |
Li Y S. Study on the influence of forest vegetation on land water cycle in the Loess Plateau[J]. Journal of Natural Resources, 2001 (5):427-432.
|
[3] |
李钰溦, 贾坤, 魏香琴, 等. 中国北方地区植被覆盖度遥感估算及其变化分析[J]. 国土资源遥感, 2015, 27(2):112-117.doi:10.6046/gtzyyg.2015.02.18.
doi: 10.6046/gtzyyg.2015.02.18
|
[3] |
Li Y W, Gu K, Wei X Q, et al. Analysis of remote sensing estimation of vegetation coverage and its change in northern China[J]. Remote Sensing for Land and Resources, 2015, 27(2):112-117.doi:10.6046/gtzyyg.2015.02.18.
doi: 10.6046/gtzyyg.2015.02.18
|
[4] |
郑朝菊, 曾源, 赵玉金, 等. 近15年中国西南地区植被覆盖度动态变化[J]. 国土资源遥感, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
doi: 10.6046/gtzyyg.2017.03.19
|
[4] |
Zheng C J, Zeng Y, Zhao Y J, et al. Dynamic changes of vegetation coverage in southwest China in recent 15 years[J]. Remote Sensing for Land and Resources, 2017, 29(3):128-136.doi:10.6046/gtzyyg.2017.03.19.
doi: 10.6046/gtzyyg.2017.03.19
|
[5] |
张含玉, 方怒放, 史志华. 黄土高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报, 2016, 36(13):3960-3968.
|
[5] |
Zhang H Y, Fang N F, Shi Z H. Spatial-temporal variation of vegetation cover and its response to climate factors in the Loess Plateau[J]. Acta Ecologica Sinica, 2016, 36(13):3960-3968.
|
[6] |
刘宪锋, 任志远, 林志慧, 等. 2000—2011年三江源区植被覆盖时空变化特征[J]. 地理学报, 2013, 68(7):897-908.
|
[6] |
Liu X F, Ren Z Y, Lin Z H, et al. Spatial-temporal variation of vegetation cover in the headwaters of the Three Rivers from 2000 to 2011[J]. Acta Geographica Sinica, 2013, 68(7):897-908.
|
[7] |
严恩萍, 林辉, 党永峰, 等. 2000—2012年京津风沙源治理区植被覆盖时空演变特征[J]. 生态学报, 2014, 34(17):5007-5020.
|
[7] |
Yan E P, Lin H, Dang Y F, et al. Spatial-temporal evolution of vegetation cover in Beijing-Tianjin sandstorm source control area from 2000 to 2012[J]. Acta Ecologica Sinica, 2014, 34(17):5007-5020.
|
[8] |
赵婷, 白红英, 邓晨晖, 等. 2000—2016年秦岭山地植被覆盖变化地形分异效应[J]. 生态学报, 2019, 39(12):4499-4509.
|
[8] |
Zhao T, Bai H Y, Deng C H, et al. Topographic differentiation effect of vegetation cover change in the Qinling Mountains from 2000 to 2016[J]. Acta Ecologica Sinica, 2019, 39(12):4499-4509.
|
[9] |
张英洁, 靳英华, 谷晓楠, 等. 长白山苔原带植被变化与土壤微生物、酶活性及土壤肥力的相关性[J]. 生态学杂志, 2017, 36(11):3086-3093.
|
[9] |
Zhang Y J, Jin Y H, Gu X N, et al. Correlation between vegetation change and soil microorganisms,enzyme activities and soil fertility in tundra belt of Changbai Mountain[J]. Chinese Journal of Ecology, 2017, 36(11):3086-3093.
|
[10] |
彭文甫, 张冬梅, 罗艳玫, 等. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9):1758-1776.
doi: 10.11821/dlxb201909005
|
[10] |
Peng W F, Zhang D M, Luo Y M, et al. Geographical detection of NDVI changes by natural factors in Sichuan Province[J]. Acta Geographica Sinica, 2019, 74(9):1758-1776.
|
[11] |
郑勇, 杨武年, 刘冲, 等. 川西高原近20 a植被覆盖变化遥感动态监测及驱动力分析[J]. 遥感技术与应用, 2020, 35(6):1447-1456.
|
[11] |
Zheng Y, Yang W N, Liu C, et al. Remote sensing dynamic monitoring and driving force analysis of vegetation cover change in Western Sichuan Plateau in recent 20 years[J]. Remote Sensing Technology and Application, 2020, 35(6):1447-1456.
|
[12] |
谢慧君, 张廷斌, 易桂花, 等. 川西高原植被NDVI动态变化特征及对气候因子的响应[J]. 水土保持通报, 2020, 40(4):286-294,328,2.
|
[12] |
Xie H J, Zhang T B, Yi G H, et al. Dynamic changes of vegetation NDVI in the western Sichuan Plateau and its response to climatic factors[J]. Bulletin of Soil and Water Conservation, 2020, 40(4):286-294,328,2.
|
[13] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
|
[13] |
Wang J F, Xu C D. Geodetectors:Principle and prospect[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
|
[14] |
王伟, 阿里木·赛买提, 吉力力·阿不都外力. 基于地理探测器模型的中亚NDVI时空变化特征及其驱动因子分析[J]. 国土资源遥感, 2019, 31(4):32-40.doi:10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
|
[14] |
Wang W, Alimu S, Jilili A. Spatial and temporal variation characteristics and driving factors of NDVI in Central Asia based on geographic detector model[J]. Remote Sensing for Land and Resources, 2019, 31(4):32-40.doi:10.6046/gtzyyg.2019.04.05.
doi: 10.6046/gtzyyg.2019.04.05
|
[15] |
付含培, 王让虎, 王晓军. 1999—2018年黄河流域NDVI时空变化及驱动力分析[J]. 水土保持研究, 2022, 29(2):145-153,162.
|
[15] |
Fu H P, Wang R H, Wang X J. Spatial-temporal variation and driving forces of NDVI in the Yellow River basin from 1999 to 2018[J]. Research of Soil and Water Conservation, 2022, 29(2):145-153,162.
|
[16] |
祝聪, 彭文甫, 张丽芳, 等. 2006—2016年岷江上游植被覆盖度时空变化及驱动力[J]. 生态学报, 2019, 39(5):1583-1594.
|
[16] |
Zhu C, Peng W F, Zhang L F, et al. Spatio-temporal variation and driving forces of vegetation coverage in the upper reaches of Minjiang River from 2006 to 2016[J]. Acta Ecologica Sinica, 2019, 39(5):1583-1594.
|
[17] |
张华, 李明, 宋金岳, 等. 基于地理探测器的祁连山国家公园植被NDVI变化驱动因素分析[J]. 生态学杂志, 2021, 40(8):2530-2540.
|
[17] |
Zhang H, Li M, Song J Y, et al. Driving factors of vegetation NDVI change in Qilian Mountain National Park based on geographic detectors[J]. Chinese Journal of Ecology, 2021, 40(8):2530-2540.
|
[18] |
张思源, 聂莹, 张海燕, 等. 基于地理探测器的内蒙古植被NDVI时空变化与驱动力分析[J]. 草地学报, 2020, 28(5):1460-1472.
doi: 10.11733/j.issn.1007-0435.2020.05.034
|
[18] |
Zhang S Y, Nie Y, Zhang H Y, et al. Spatio-temporal variation and driving force analysis of vegetation NDVI in Inner Mongolia based on geographic detectors[J]. Acta Grassland Sinica, 2020, 28(5):1460-1472.
|
[19] |
姜晓剑, 刘小军, 黄芬, 等. 逐日气象要素空间插值方法的比较[J]. 应用生态学报, 2010, 21(3):624-630.
|
[19] |
Jiang X J, Liu X J, Huang F, et al. Comparison of spatial interpolation methods for daily meteorological elements[J]. Chinese Journal of Applied Ecology, 2010, 21(3):624-630.
|
[20] |
袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 2013, 33(24):7798-7806.
|
[20] |
Yuan L H, Jiang W G, Shen W M, et al. Spatial-temporal changes of vegetation cover in the Yellow River Basin from 2000 to 2010[J]. Acta Ecologica Sinica, 2013, 33(24):7798-7806.
|
[21] |
Lunetta R S, Knight J F, Ediriwickrema J, et al. Land-cover change detection using multi-temporal MODIS NDVI data[J]. Remote Sensing of Environment, 2006, 105(2):142-154.
doi: 10.1016/j.rse.2006.06.018
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706002549
|
[22] |
蔡博峰, 于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报, 2009, 13(6):1170-1186.
|
[22] |
Cai B F, Yu R. Research progress and evaluation of long time series trend characteristics of vegetation based on remote sensing[J]. Journal of Remote Sensing, 2009, 13(6):1170-1186.
|
[23] |
范娜, 谢高地, 张昌顺, 等. 2001年至2010年澜沧江流域植被覆盖动态变化分析[J]. 资源科学, 2012, 34(7):1222-1231.
|
[23] |
Fan N, Xie G D, Zhang C S, et al. Dynamic change of vegetation cover in Lancang River basin from 2001 to 2010[J]. Resources Science, 2012, 34(7):1222-1231.
|
[24] |
左丽媛, 高江波. 基于地理探测器的喀斯特植被NPP定量归因[J]. 生态环境学报, 2020, 29(4):686-694.
doi: 10.16258/j.cnki.1674-5906.2020.04.006
|
[24] |
Zuo L Y, Gao J B. Quantitative attribution of NPP of Karst vegetation based on geographic detector[J]. Journal of Eco-Environment, 2020, 29(4):686-694.
|
[25] |
徐勇, 郑志威, 郭振东, 等. 2000—2020年长江流域植被NDVI动态变化及影响因素探测[J]. 环境科学, 2022(7):3730-3740.
|
[25] |
Xu Y, Zheng Z W, Guo Z D, et al. Dynamic changes and influencing factors of vegetation NDVI in the Yangtze River basin from 2000 to 2020[J]. Environmental Science, 2022(7):3730-3740.
|
[26] |
孟琪, 武志涛, 杜自强, 等. 基于地理探测器的区域植被覆盖度的定量影响——以京津风沙源区为例[J]. 中国环境科学, 2021, 41(2):826-836.
|
[26] |
Meng Q, Wu Z T, Du Z Q, et al. Quantitative impacts of regional vegetation coverage based on geographic detectors:A case study of the Beijing-Tianjin aeolian sand source area[J]. China Environmental Science, 2021, 41(2):826-836.
|
[27] |
荣欣, 易桂花, 张廷斌, 等. 2000—2015年川西高原植被EVI海拔梯度变化及其对气候变化的响应[J]. 长江流域资源与环境, 2019, 28(12):3014-3028.
|
[27] |
Rong X, Yi G H, Zhang T B, et al. Changes of EVI gradient and its response to climate change in the western Sichuan Plateau from 2000 to 2015[J]. Resources and Environment in the Yangtze Basin, 2019, 28(12):3014-3028.
|
[28] |
郑朝菊, 曾源, 赵玉金, 等. 20世纪90年代以来中国西南地区土地覆被变化[J]. 生态学报, 2016, 36(23):7858-7869.
|
[28] |
Zheng C J, Zeng Y, Zhao Y J, et al. Land cover change in southwest China since the 1990s[J]. Acta Ecologica Sinica, 2016, 36(23):7858-7869.
|
[29] |
朱昌丽, 张继飞, 赵宇鸾, 等. 青藏高原东缘典型流域生态系统服务的地形梯度效应——以岷江上游为例[J]. 长江流域资源与环境, 2017, 26(10):1687-1699.
|
[29] |
Zhu C L, Zhang J F, Zhao Y L, et al. Topographic gradient effects of ecosystem services in a typical watershed in the eastern margin of the Qinghai-Tibet Plateau:A case study of the upper Minjiang River[J]. Resources and Environment in the Yangtze Basin, 2017, 26(10):1687-1699.
|
[30] |
Chen T, Feng Z, Zhao H, et al. Identification of ecosystem service bundles and driving factors in Beijing and its surrounding areas[J]. Science of the Total Environment, 2019, 711(2):134687.
doi: 10.1016/j.scitotenv.2019.134687
url: https://linkinghub.elsevier.com/retrieve/pii/S0048969719346789
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|