|
Abstract The clarification of the dynamic change trend of cultivated land and its driving factors is an important basis for ensuring national food security, rationally developing and utilizing soil and water resources and adjusting land use structure. Taking Alar reclamation area in southern Xinjiang as an example and based on Landsat satellite remote sensing images, population, GDP and other data of seven important periods from 1990 to 2019, the authors selected the best algorithm to interpret remote sensing images by comparing the accuracy of five classification algorithms comprising SAM-CRF, ANN-CRF, MDC-CRF, MLC-CRF and SVM-CRF. Next, the characteristics of cultivated land area change, type transformation and spatial dynamic change were analyzed by using the interpretation results, and then the main driving factors, action path and intensity of cultivated land area change were discussed. The results show that the SVM-CRF algorithm has the highest classification accuracy among the five classification algorithms, with the overall accuracy of 0.95 and the Kappa coefficient of 0.94. The overall accuracy of the other four algorithms is between 0.65 and 0.89, and the Kappa coefficient is between 0.58 and 0.86. The area of cultivated land in the study area has continued to increase in the past three decades, and the net increase in cultivated land area is 729.97 km 2 (312.21%). Cultivated land transfer-in and transfer-out has shown a trend of outward expansion and inward contraction, respectively. Total population, GDP, Total Investment in Fixed Assets, gross agricultural product and cotton price are the main driving factors for the change of cultivated land area,among which GDP has the greatest direct impact on the change of cultivated land area, while cotton price has the least impact. Except that GDP has a negative effect on cultivated land area, the other four factors have a positive effect on cultivated land area, and the overall performance of the five factors is a positive effect.
|
Keywords
change of cultivated land
driving factors
remote sensing
Landsat
land use/cover
|
|
Corresponding Authors:
PENG Jie
E-mail: tarimsongqi@163.com;pjzky@163.com
|
Issue Date: 21 July 2021
|
|
|
[1] |
赵晓丽, 张增祥, 汪潇, 等. 中国近30a耕地变化时空特征及其主要原因分析[J]. 农业工程学报, 2014, 30(3):1-11.
|
[1] |
Zhao X L, Zhang Z X, Wang X, et al. Analysis of chinese cultivated land’s spatial-temporal changes and causes in recent 30 years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3):1-11.
|
[2] |
Wang Y H, Dai E F, Yin L, et al. Land use/land cover change and the effects on ecosystem services in the Hengduan mountain region,China[J]. Ecosystem Services, 2018, 34(A):55-67.
doi: 10.1016/j.ecoser.2018.09.008
url: https://linkinghub.elsevier.com/retrieve/pii/S2212041618300652
|
[3] |
Wang J, Chen Y Q, Shao X M, et al. Land-use changes and policy dimension driving forces in China:Present,trend and future[J]. Land Use Policy, 2012, 29(4):737-749.
doi: 10.1016/j.landusepol.2011.11.010
url: https://linkinghub.elsevier.com/retrieve/pii/S0264837711001372
|
[4] |
陈红, 吴世新, 冯雪力. 基于遥感和GIS的新疆耕地变化及驱动力分析[J]. 自然资源学报, 2010, 25(4):614-624.
|
[4] |
Chen H, Wu S X, Feng X L. Study on the changes of cultivated Land and the driving factors in Xinjiang based on RS and GIS[J]. Journal of Natural Resources, 2010, 25(4):614-624.
|
[5] |
李景刚, 何春阳, 史培军, 等. 近20年中国北方13省的耕地变化与驱动力[J]. 地理学报, 2004, 59(2):274-282.
|
[5] |
Li J G, He C Y, Shi P J, et al. Change process of cultivated land and its driving forces in northern China during 1983—2001[J]. Acta Geographica Sinica, 2004, 59(2):274-282.
|
[6] |
杨桂山. 土地利用/覆被变化与区域经济发展—长江三角洲近50年耕地数量变化研究的启示[J]. 地理学报, 2004, 59(s1):41-46.
|
[6] |
Yang G S. Land use and land cover change and regional economic development:The revelation of the change in cropland area in the Yangtze river delta during the past 50 years[J]. Acta Geographica Sinica, 2004, 59(s1):41-46.
|
[7] |
Jia B Q, Zhang Z Q, Ci L G, et al. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang,China[J]. Journal of Arid Environments, 2004, 56(1):11-26.
doi: 10.1016/S0140-1963(03)00002-8
url: https://linkinghub.elsevier.com/retrieve/pii/S0140196303000028
|
[8] |
Wang X C, Dong X B, Liu H M, et al. Linking land use change,ecosystem services and human well-being:A case study of the Manas River Basin of Xinjiang,China[J]. Ecosystem Services, 2017, 27(A):113-123.
doi: 10.1016/j.ecoser.2017.08.013
url: https://linkinghub.elsevier.com/retrieve/pii/S2212041617301195
|
[9] |
禹丝思, 孙中昶, 郭华东, 等. 海上丝绸之路超大城市空间扩展遥感监测与分析[J]. 遥感学报, 2017, 21(2):169-181.
|
[9] |
Yu S S, Sun Z C, Guo H D, et al. Monitoring and analyzing the spatial dynamics and patterns of megacities along the Maritime Silk Road[J]. Journal of Remote Sensing, 2017, 21(2):169-181.
|
[10] |
蔡利华. 阿拉尔垦区耕地养分现状与分布特征[D]. 石河子:石河子大学, 2013.
|
[10] |
Cai L H. The status and spatial distribution of soil nutrient in Alar reclamation area[D]. Shihezi:Shihezi University, 2013.
|
[11] |
张艳波, 闫慧洁. 阿拉尔垦区自然灾害对农业经济影响的研究[J]. 数学的实践与认识, 2017, 47(1):286-290.
|
[11] |
Zhang Y B, Yan H J. Effect of natural disaster on agricultural economy in Alar irrigated area[J]. Mathematics in Practice and Theory, 2017, 47(1):286-290.
|
[12] |
朱金峰, 周艺, 王世新, 等. 1975年—2018年白洋淀湿地变化分析[J]. 遥感学报, 2019, 23(5):971-986.
|
[12] |
Zhu J F, Zhou Y, Wang S X, et al. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing[J]. Journal of Remote Sensing, 2019, 23(5):971-986.
|
[13] |
梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类[J]. 光谱学与光谱分析, 2010, 30(10):2724-2728.
|
[13] |
Liang L, Yang M H, Li Y F. Hyperspectral remote sensing image classification based on ICA and SVM algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2724-2728.
|
[14] |
袁静文, 武辰, 杜博, 等. 高分五号高光谱遥感影像的城市土地利用景观格局分析[J]. 遥感学报, 2020, 24(4):465-478.
|
[14] |
Yuan J W, Wu C, Du B, et al. Analysis of landscape pattern on urban land use based on GF-5 hyperspectral data[J]. Journal of Remote Sensing(Chinese), 2020, 24(4):465-478.
|
[15] |
Gong J Z, Jiang C, Chen W L, et al. Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou:Insights from zoning[J]. Habitat International, 2018, 82:104-112.
doi: 10.1016/j.habitatint.2018.10.004
url: https://linkinghub.elsevier.com/retrieve/pii/S0197397518307264
|
[16] |
Liu C H, Ma X X. Analysis to driving forces of land use change in Lu’an mining area[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3):727-732.
|
[17] |
Elagouz M H, Abou-Shleel S M, Belal A A, et al. Detection of land use/cover change in egyptian nile delta using remote sensing[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2020, 23(1):57-62.
|
[18] |
Shen S G, Yue P, Fan C J. Quantitative assessment of land use dynamic variation using remote sensing data and landscape pattern in the Yangtze river delta,China[J]. Sustainable Computing:Informatics and Systems, 2019, 23:111-119.
doi: 10.1016/j.suscom.2019.07.006
url: https://linkinghub.elsevier.com/retrieve/pii/S2210537919300101
|
[19] |
宋戈, 王越, 雷国平. 松嫩高平原黑土区耕地利用系统安全影响因子作用机理研究——以黑龙江省巴彦县为例[J]. 自然资源学报, 2014, 29(1):13-26.
|
[19] |
Song G, Wang Y, Lei G P. Effect mechanism research of influential factors of cultivated land use system security of black soil region in songnen high plain:A case study of Bayan County in Heilongjiang Province[J]. Journal of Natural Resources, 2014, 29(1):13-26.
|
[20] |
Tian G J, Liu J Y, Xie Y C, et al. Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS[J]. Cities, 2005, 22(6):400-410.
doi: 10.1016/j.cities.2005.05.009
url: https://linkinghub.elsevier.com/retrieve/pii/S0264275105000545
|
[21] |
Fan Q D, Ding S Y. Landscape pattern changes at a county scale:A case study in Fengqiu,Henan Province,China from 1990 to 2013[J]. Catena, 2016, 137:152-160.
doi: 10.1016/j.catena.2015.09.012
url: https://linkinghub.elsevier.com/retrieve/pii/S0341816215301120
|
[22] |
Liu Y L, Luo T, Liu Z Q, et al. A comparative analysis of urban and rural construction land use change and driving forces:implications for urbanerural coordination development in Wuhan,Central China[J]. Habitat International, 2015, 47:113-125.
doi: 10.1016/j.habitatint.2015.01.012
url: https://linkinghub.elsevier.com/retrieve/pii/S0197397515000132
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|