Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (2) : 202-212     DOI: 10.6046/gtzyyg.2020183
|
Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years
SONG Qi(), FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie()
College of Plant Science, Tarim University, Alar 843300, China
Download: PDF(7094 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The clarification of the dynamic change trend of cultivated land and its driving factors is an important basis for ensuring national food security, rationally developing and utilizing soil and water resources and adjusting land use structure. Taking Alar reclamation area in southern Xinjiang as an example and based on Landsat satellite remote sensing images, population, GDP and other data of seven important periods from 1990 to 2019, the authors selected the best algorithm to interpret remote sensing images by comparing the accuracy of five classification algorithms comprising SAM-CRF, ANN-CRF, MDC-CRF, MLC-CRF and SVM-CRF. Next, the characteristics of cultivated land area change, type transformation and spatial dynamic change were analyzed by using the interpretation results, and then the main driving factors, action path and intensity of cultivated land area change were discussed. The results show that the SVM-CRF algorithm has the highest classification accuracy among the five classification algorithms, with the overall accuracy of 0.95 and the Kappa coefficient of 0.94. The overall accuracy of the other four algorithms is between 0.65 and 0.89, and the Kappa coefficient is between 0.58 and 0.86. The area of cultivated land in the study area has continued to increase in the past three decades, and the net increase in cultivated land area is 729.97 km 2 (312.21%). Cultivated land transfer-in and transfer-out has shown a trend of outward expansion and inward contraction, respectively. Total population, GDP, Total Investment in Fixed Assets, gross agricultural product and cotton price are the main driving factors for the change of cultivated land area,among which GDP has the greatest direct impact on the change of cultivated land area, while cotton price has the least impact. Except that GDP has a negative effect on cultivated land area, the other four factors have a positive effect on cultivated land area, and the overall performance of the five factors is a positive effect.

Keywords change of cultivated land      driving factors      remote sensing      Landsat      land use/cover     
ZTFLH:  TP79  
Corresponding Authors: PENG Jie     E-mail: tarimsongqi@163.com;pjzky@163.com
Issue Date: 21 July 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi SONG
Chunhui FENG
Qi GAO
Mingyue WANG
Jialin WU
Jie PENG
Cite this article:   
Qi SONG,Chunhui FENG,Qi GAO, et al. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020183     OR     https://www.gtzyyg.com/EN/Y2021/V33/I2/202
Fig.1  Geographic position of study area
Fig.2  Satellite remote sensing images of Alar reclamation area from 1990 to 2019
类型 包含地类 假彩色影像特征 假彩色影像 实地照片
耕地 棉地、玉米地、小麦地、高粱地等 鲜红色,形状规则,一般为矩形,均匀分布
林草地 胡杨、草场、柽柳等 红色,形状不规则,一般分布在河流及道路两侧
园地 苹果地、葡萄地、枣地、香梨地等 暗红色,形状相对规则,连片分布
水体 河流、水库、沟渠等 蓝色,形状规则,有明显边界线
建设用地 城镇、学校、乡村、工矿等各类建设用地 白色、浅蓝色,形状规则,连片分布
沙地 沙漠、沙质土壤 淡黄色,形状不规则,有清晰纹理,成片分布
盐碱地 受到盐渍化污染的土壤 白色,形状不规则,有明显白色斑块,成片分布
其他 湿地、裸石、荒地等 棕色或黑色,形状不规则,多分布于水体及荒地附近
Tab.1  Classification system and interpretation signs of Alar reclamation area
Fig.3  Number and distribution of sample points for each category
类型 SAM—CRF ANN—CRF MDC—CRF MLC—CRF SVM—CRF
UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/% UA/% PA/%
耕地 73.85 74.15 91.56 77.87 92.47 83.30 94.47 89.90 98.41 99.77
林草地 34.50 45.87 65.20 68.33 72.24 69.86 83.59 77.21 97.33 94.89
园地 55.63 63.23 76.44 84.08 81.09 85.30 92.05 87.91 96.89 97.64
水体 85.48 72.13 88.65 79.47 90.66 82.84 91.67 85.69 92.81 93.34
建设用地 42.13 47.57 63.30 71.29 67.70 72.92 83.15 86.12 96.43 90.40
沙地 78.89 48.73 85.02 76.09 88.11 86.38 89.11 88.49 95.32 89.49
盐碱地 60.37 87.37 73.51 90.31 81.59 91.57 82.23 92.71 95.63 93.74
其他 52.60 72.03 78.61 77.82 81.57 83.96 88.46 88.19 91.93 98.95
Kappa 0.58 0.77 0.82 0.86 0.94
OA 0.64 0.81 0.84 0.89 0.95
Tab.2  Accuracy comparison of SAM—CRF,ANN—CRF,MDC—CRF, MLC—CRF and SVM—CRF classification results in 2019
Fig.4  The classification results of each method were compared
Fig.5  Local region comparison of SVM and SVM—CRF algorithm results

类别
预测类别
总计

UA/%
耕地 林草地 园地 水体 建设用地 沙地 盐碱地 其他
真实类别 耕地 20 896 207 34 8 15 52 16 6 21 234 98.41
林草地 22 10 129 167 26 0 4 25 34 10 407 97.33
园地 22 235 8 867 1 0 8 10 9 9 152 96.89
水体 0 0 0 17 579 0 1 334 7 20 18 940 92.81
建设用地 0 0 0 8 2 485 68 10 6 2 577 96.43
沙地 0 0 0 677 0 17 152 132 33 17 994 95.32
盐碱地 0 51 0 9 193 418 16 855 99 17 625 95.63
其他 4 52 13 525 56 130 926 19 440 21 146 91.93
总计 20 944 10 674 9 081 18 833 2 749 19 166 17 981 19 647 119 075
PA/% 99.77 94.89 97.64 93.34 90.40 89.49 93.74 98.95 OA/% 95.24
Tab.3  Evaluation of land type accuracy in Alar reclamation area
Fig.6  1990—2019 land use/cover in Alar reclamation area
Fig.7  The proportion of each land type in Alar reclamation area from 1990 to 2019
Fig.8  Average annual change rate of land use types in Alar reclamation area from 1990 to 2019
年份 1990年 合计
耕地 林草地 园地 水体 建设用地 沙地 盐碱地 其他
2019年 耕地 94.91 32.95 11.37 1.27 54.97 312.99 345.74 854.20
林草地 52.49 17.74 15.94 0.92 57.43 260.87 258.29 663.68
园地 47.67 59.68 2.43 0.52 17.96 73.15 113.17 314.58
水体 1.08 12.18 0.39 0.09 15.20 67.03 46.20 142.17
建设用地 10.59 12.90 1.82 0.29 1.38 8.03 22.55 57.56
沙地 0.12 4.93 0.15 4.48 0.02 105.39 49.29 164.38
盐碱地 3.13 4.09 0.61 5.05 0.13 351.32 109.86 474.19
其他 9.17 40.13 3.49 35.34 0.53 88.52 177.01 354.19
合计 124.25 228.82 57.15 74.90 3.48 586.78 1 004.47 945.10
Tab.4  Transformation matrix in all parts of Alar reclamation area from 1990 to 2019(km2)
Fig.9  Spatial dynamic change chart of cultivated land from 1990 to 2019
年份 总人口/
万人
非农业人
口/万人
GDP/
亿元
全社会固定资
产投资/亿元
第一产
业/亿元
农业生产
总值/亿元
棉花价格/
(元·kg-1)
年均气
温/℃
年均降
水量/mm
耕地面
积/km2
1990年 -1.49 -0.97 -0.79 -0.74 -0.91 -0.82 -1.78 1.05 -0.65 -1.48
1994年 -0.95 -0.87 -0.72 -0.72 -0.79 -0.84 -0.57 0.42 -1.25 -0.95
2000年 -0.16 -0.81 -0.66 -0.67 -0.73 -0.75 -0.29 -0.85 -1.22 -0.40
2006年 0.19 -0.11 -0.47 -0.47 -0.46 -0.46 0.46 -1.17 0.77 0.12
2010年 0.24 0.09 -0.20 -0.25 0.18 0.10 1.25 -0.85 0.89 0.55
2015年 0.65 1.17 1.19 1.13 1.15 1.49 0.15 1.37 0.55 0.84
2019年 1.52 1.50 1.66 1.71 1.56 1.27 0.79 0.04 0.91 1.31
Tab.5  Change of cultivated land area in Alar reclamation area from 1990 to 2019 and the value after standardization of relevant indexes
相关系数 总人口/
万人
非农业人
口/万人
GDP/
亿元
全社会固定资
产投资/亿元
第一产
业/亿元
农业生产
总值/亿元
棉花价格/
(元·kg-1)
年均气
温/℃
年均降
水量/mm
耕地面
积/km2
总人口/万人
非农业人口/万人 0.91
GDP/亿元 0.86 0.97
全社会固定资产投资/亿元 0.85 0.97 0.99
第一产业/亿元 0.89 0.99 0.99 0.98
农业生产总值/亿元 0.83 0.97 0.97 0.96 0.98
棉花价格/
(元·kg-1)
0.82 0.65 0.50 0.49 0.62 0.55
年均气温/℃ -0.22 0.17 0.31 0.31 0.23 0.33 -0.54
年均降水量/mm 0.74 0.79 0.64 0.63 0.72 0.70 0.75 -0.17
耕地面积/km2 0.98 0.93 0.85 0.84 0.91 0.87 0.87 -0.17 0.81
Tab.6  Variable correlation coefficient matrix of the driving force of farmland change
因子 直接作用 间接作用
总人口/
万人
GDP/
亿元
全社会固
定资产投
资/亿元
农业生
产总值/
亿元
棉花
价格/
(元·kg-1)
总人口/万人 0.57** -1.29** 0.95** 0.52** 0.21**
GDP/亿元 -1.51** 0.49** 1.12** 0.61** 0.13**
全社会
固定资
产投资/
亿元
1.12** 0.48** -1.51** 0.61** 0.12**
农业生
产总值/
亿元
0.63** 0.47** -1.46** 1.07** 0.14**
棉花价
格/(元·kg-1)
0.26** 0.47** -0.76** 0.54** 0.34**
Tab.7  The path coefficient of driving factor to cultivated land area
[1] 赵晓丽, 张增祥, 汪潇, 等. 中国近30a耕地变化时空特征及其主要原因分析[J]. 农业工程学报, 2014, 30(3):1-11.
[1] Zhao X L, Zhang Z X, Wang X, et al. Analysis of chinese cultivated land’s spatial-temporal changes and causes in recent 30 years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3):1-11.
[2] Wang Y H, Dai E F, Yin L, et al. Land use/land cover change and the effects on ecosystem services in the Hengduan mountain region,China[J]. Ecosystem Services, 2018, 34(A):55-67.
doi: 10.1016/j.ecoser.2018.09.008 url: https://linkinghub.elsevier.com/retrieve/pii/S2212041618300652
[3] Wang J, Chen Y Q, Shao X M, et al. Land-use changes and policy dimension driving forces in China:Present,trend and future[J]. Land Use Policy, 2012, 29(4):737-749.
doi: 10.1016/j.landusepol.2011.11.010 url: https://linkinghub.elsevier.com/retrieve/pii/S0264837711001372
[4] 陈红, 吴世新, 冯雪力. 基于遥感和GIS的新疆耕地变化及驱动力分析[J]. 自然资源学报, 2010, 25(4):614-624.
[4] Chen H, Wu S X, Feng X L. Study on the changes of cultivated Land and the driving factors in Xinjiang based on RS and GIS[J]. Journal of Natural Resources, 2010, 25(4):614-624.
[5] 李景刚, 何春阳, 史培军, 等. 近20年中国北方13省的耕地变化与驱动力[J]. 地理学报, 2004, 59(2):274-282.
[5] Li J G, He C Y, Shi P J, et al. Change process of cultivated land and its driving forces in northern China during 1983—2001[J]. Acta Geographica Sinica, 2004, 59(2):274-282.
[6] 杨桂山. 土地利用/覆被变化与区域经济发展—长江三角洲近50年耕地数量变化研究的启示[J]. 地理学报, 2004, 59(s1):41-46.
[6] Yang G S. Land use and land cover change and regional economic development:The revelation of the change in cropland area in the Yangtze river delta during the past 50 years[J]. Acta Geographica Sinica, 2004, 59(s1):41-46.
[7] Jia B Q, Zhang Z Q, Ci L G, et al. Oasis land-use dynamics and its influence on the oasis environment in Xinjiang,China[J]. Journal of Arid Environments, 2004, 56(1):11-26.
doi: 10.1016/S0140-1963(03)00002-8 url: https://linkinghub.elsevier.com/retrieve/pii/S0140196303000028
[8] Wang X C, Dong X B, Liu H M, et al. Linking land use change,ecosystem services and human well-being:A case study of the Manas River Basin of Xinjiang,China[J]. Ecosystem Services, 2017, 27(A):113-123.
doi: 10.1016/j.ecoser.2017.08.013 url: https://linkinghub.elsevier.com/retrieve/pii/S2212041617301195
[9] 禹丝思, 孙中昶, 郭华东, 等. 海上丝绸之路超大城市空间扩展遥感监测与分析[J]. 遥感学报, 2017, 21(2):169-181.
[9] Yu S S, Sun Z C, Guo H D, et al. Monitoring and analyzing the spatial dynamics and patterns of megacities along the Maritime Silk Road[J]. Journal of Remote Sensing, 2017, 21(2):169-181.
[10] 蔡利华. 阿拉尔垦区耕地养分现状与分布特征[D]. 石河子:石河子大学, 2013.
[10] Cai L H. The status and spatial distribution of soil nutrient in Alar reclamation area[D]. Shihezi:Shihezi University, 2013.
[11] 张艳波, 闫慧洁. 阿拉尔垦区自然灾害对农业经济影响的研究[J]. 数学的实践与认识, 2017, 47(1):286-290.
[11] Zhang Y B, Yan H J. Effect of natural disaster on agricultural economy in Alar irrigated area[J]. Mathematics in Practice and Theory, 2017, 47(1):286-290.
[12] 朱金峰, 周艺, 王世新, 等. 1975年—2018年白洋淀湿地变化分析[J]. 遥感学报, 2019, 23(5):971-986.
[12] Zhu J F, Zhou Y, Wang S X, et al. Analysis of changes of Baiyangdian wetland from 1975 to 2018 based on remote sensing[J]. Journal of Remote Sensing, 2019, 23(5):971-986.
[13] 梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类[J]. 光谱学与光谱分析, 2010, 30(10):2724-2728.
[13] Liang L, Yang M H, Li Y F. Hyperspectral remote sensing image classification based on ICA and SVM algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2724-2728.
[14] 袁静文, 武辰, 杜博, 等. 高分五号高光谱遥感影像的城市土地利用景观格局分析[J]. 遥感学报, 2020, 24(4):465-478.
[14] Yuan J W, Wu C, Du B, et al. Analysis of landscape pattern on urban land use based on GF-5 hyperspectral data[J]. Journal of Remote Sensing(Chinese), 2020, 24(4):465-478.
[15] Gong J Z, Jiang C, Chen W L, et al. Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou:Insights from zoning[J]. Habitat International, 2018, 82:104-112.
doi: 10.1016/j.habitatint.2018.10.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0197397518307264
[16] Liu C H, Ma X X. Analysis to driving forces of land use change in Lu’an mining area[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3):727-732.
[17] Elagouz M H, Abou-Shleel S M, Belal A A, et al. Detection of land use/cover change in egyptian nile delta using remote sensing[J]. The Egyptian Journal of Remote Sensing and Space Sciences, 2020, 23(1):57-62.
[18] Shen S G, Yue P, Fan C J. Quantitative assessment of land use dynamic variation using remote sensing data and landscape pattern in the Yangtze river delta,China[J]. Sustainable Computing:Informatics and Systems, 2019, 23:111-119.
doi: 10.1016/j.suscom.2019.07.006 url: https://linkinghub.elsevier.com/retrieve/pii/S2210537919300101
[19] 宋戈, 王越, 雷国平. 松嫩高平原黑土区耕地利用系统安全影响因子作用机理研究——以黑龙江省巴彦县为例[J]. 自然资源学报, 2014, 29(1):13-26.
[19] Song G, Wang Y, Lei G P. Effect mechanism research of influential factors of cultivated land use system security of black soil region in songnen high plain:A case study of Bayan County in Heilongjiang Province[J]. Journal of Natural Resources, 2014, 29(1):13-26.
[20] Tian G J, Liu J Y, Xie Y C, et al. Analysis of spatio-temporal dynamic pattern and driving forces of urban land in China in 1990s using TM images and GIS[J]. Cities, 2005, 22(6):400-410.
doi: 10.1016/j.cities.2005.05.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0264275105000545
[21] Fan Q D, Ding S Y. Landscape pattern changes at a county scale:A case study in Fengqiu,Henan Province,China from 1990 to 2013[J]. Catena, 2016, 137:152-160.
doi: 10.1016/j.catena.2015.09.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816215301120
[22] Liu Y L, Luo T, Liu Z Q, et al. A comparative analysis of urban and rural construction land use change and driving forces:implications for urbanerural coordination development in Wuhan,Central China[J]. Habitat International, 2015, 47:113-125.
doi: 10.1016/j.habitatint.2015.01.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0197397515000132
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[4] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[5] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[6] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[7] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[8] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[9] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[10] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[11] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[12] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[13] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[14] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[15] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech