Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 90-98     DOI: 10.6046/zrzyyg.2022018
|
A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images
JIN Yuanhang(), XU Maolin(), ZHENG Jiayuan
School of Civil Engineering, Liaoning University of Science and Technology, Anshan 114051, China
Download: PDF(10609 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The current dead tree detection primarily relies on manual field surveys and, thus, is limited by forest topography, suffers a low detection efficiency, and is dangerous. Given these problems, this study proposed a YOLOv4-tiny dead tree detection algorithm based on the attention mechanism and spatial pyramid pooling (SPP) and improved the original detection model. First, the SPP structure was introduced after the Backbone part of the model to combine local and global features and enrich the feature representation capability of the model. Then, the original activation function LeakyReLU in the model was replaced with ELU, which made the activation function saturate unilaterally, thus improving the convergence and robustness of the model. Finally, the attention mechanism ECANet was introduced into the model to enhance the capacity of the network to learn important information in images, thus improving the performance of the network. The images of trees in a mountain forest of a scenic area in southern Liaoning were collected using an unmanned aerial vehicle (UAV). Then, dead trees in these images were detected using different models. The detection results show that the improved algorithm had a detection accuracy of 93.25%, which was improved by 9.58%, 12.57%, 10.54%, and 4.87% than that of the YOLOv4-tiny, YOLOv4, and SSD algorithms and an algorithm stated in literature [8], respectively, and achieved the effective detection of dead trees.

Keywords dead tree      YOLOv4-tiny      attention mechanism      SPP      ELU activation function     
ZTFLH:  TP751  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuanhang JIN
Maolin XU
Jiayuan ZHENG
Cite this article:   
Yuanhang JIN,Maolin XU,Jiayuan ZHENG. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022018     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/90
Fig.1  Flow chart of dead tree detection technology
Fig.2  SPP structure with fixed size output
Fig.3  Comparison between activation function LeakyReLU and ELU
Fig.4  ECA attention module structure
Fig.5  Improved YOLOv4 tiny structure
Fig.6  Partial dataset image
Fig.7  Data enhancement
模型 AP/% FPS
YOLOv4-tiny(SENet) 87.69 187.77
YOLOv4-tiny(CBAM) 88.04 176.84
YOLOv4-tiny(ECANet) 88.65 200.94
Tab.1  Results of different attention mechanisms
Fig.8  Comparison of partial detection results
激活函数 AP/% FPS
LeakyReLU 88.65 200.94
ELU 90.87 188.12
Tab.2  Comparison of different activation functions
模型 AP/% FPS
YOLOv4-tiny 90.87 188.12
YOLOv4-tiny(SPP) 93.25 182.63
Tab.3  Comparison of test results of 2 models
Fig.9  Different state partial images
状态 YOLOv4 SSD YOLOv4-tiny 本文算法
明亮 85.50 86.56 83.55 93.16
黑暗 88.80 95.91 86.23 94.32
Tab.4  Comparison of four models for different image detection results(%)
Fig.10  The change trend of Loss in model training
模型 AP/% FPS
YOLOv4 82.71 47.45
SSD 80.68 110.37
YOLOv4-tiny 83.67 196.22
文献[8] 88.38 179.54
本文算法 93.25 182.63
Tab.5  The results of the 4 models were compared
Batch Size AP/% FPS
2 90.36 170.23
4 92.65 175.29
8 92.33 177.46
16 93.25 182.63
32 93.36 174.38
64 91.80 178.73
Tab.6  Comparison of different Batch Size
数量 AP/% FPS
1 000 75.65 177.40
2 000 78.08 164.18
3 000 82.60 175.40
4 000 84.42 174.73
5 000 86.59 174.26
6 000 89.21 175.12
7 000 91.98 175.39
8 000 93.36 174.38
Tab.7  Comparison of different data sets
[1] Kamińska A, Lisiewicz M, Stereńczak K, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.
doi: 10.1016/j.rse.2018.10.005 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571830453X
[2] 毕凯, 李英成, 丁晓波, 等. 轻小型无人机航摄技术现状及发展趋势[J]. 测绘通报, 2015(3):27-31,48.
[2] Bi K, Li Y C, Ding X B, et al. Aerial photogrammetric technology of light small UAV:Status and trend of development[J]. Bulletin of Surveying and Mapping, 2015(3):27-31,48.
[3] 汪沛, 罗锡文, 周志艳, 等. 基于微小型无人机的遥感信息获取关键技术综述[J]. 农业工程学报, 2014, 30(18):1-12.
[3] Wang P, Luo X W, Zhou Z Y, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18):1-12.
[4] Kamińska A, Lisiewicz M, K Stereńczak, et al. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery[J]. Remote Sensing of Environment, 2018, 219:31-43.
doi: 10.1016/j.rse.2018.10.005 url: https://linkinghub.elsevier.com/retrieve/pii/S003442571830453X
[5] Manandhar A, Hoegner L, Stilla U. Palm tree detection using circular autocorrelation of polar shape matrix[J]. ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences, 2016, 3:465-472.
[6] 宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4):187-195.
[6] Song Y N, Liu W P, Luo Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Scientia Silvae Sinicae, 2019, 55(4):187-195.
[7] Culman M, Delalieux S, Van Tricht K. Individual palm tree detection using deep learning on RGB imagery to support tree inventory[J]. Remote Sensing, 2020, 12(21):3476.
doi: 10.3390/rs12213476 url: https://www.mdpi.com/2072-4292/12/21/3476
[8] 王新彦, 吕峰, 易政洋. 基于深度学习的草坪树木检测方法研究[J]. 中国农机化学报, 2021, 42(7):136-141.
doi: 10.13733/j.jcam.issn.2095-5553.2021.07.20
[8] Wang X Y, Lyu F, Yi Z Y. Research on lawn tree detection method based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7):136-141.
[9] Yu R, Luo Y, Zhou Q, et al. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery[J]. Forest Ecology and Management, 2021, 497:119493.
doi: 10.1016/j.foreco.2021.119493 url: https://linkinghub.elsevier.com/retrieve/pii/S037811272100582X
[10] 李海滨, 孙远, 张文明, 等. 基于YOLOv4-tiny的溜筒卸料煤尘检测方法[J]. 光电工程, 2021, 48(6):73-86.
[10] Li H B, Sun Y, Zhang W M, et al. The detection method for coal dust caused by chute discharge based on YOLOv4-tiny[J]. Opto-Electronic Engineering, 2021, 48(6):73-86.
[11] Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, 2020, 17(9):198-215.
[12] Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
[13] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
doi: 10.1109/TPAMI.2015.2389824 pmid: 26353135
[14] Clevert D A, Unterthiner T, Hochreiter S. Fast and accurate deep network learning by exponential linear units (ELUS)[C]// Proceedings of the 4th International Conference on Learning Representations.ICLR, 2015:375-387.
[15] Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]// CVF Conference on Computer Vision and Pattern Recognition.Seattle.IEEE, 2020:11531-11539.
[16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
[17] 赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8):289-296.
doi: 10.3778/j.issn.1002-8331.2010-0192
[17] Zhao J L, Zhang X Z, Dong H Y. Defect detection in transmission line based on scale-invariant feature pyramid networks[J]. Computer Engineering and Applications, 2022, 58(8):289-296.
doi: 10.3778/j.issn.1002-8331.2010-0192
[18] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
doi: 10.1007/s11263-009-0275-4 url: http://link.springer.com/10.1007/s11263-009-0275-4
[19] 郭晓征, 姚云军, 贾坤, 等. 基于U-Net深度学习方法火星沙丘提取研究[J]. 自然资源遥感, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.
doi: 10.6046/zrzyyg.2020397
[19] Guo X Z, Yao Y J, Jia K, et al. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4):130-135.doi:10.6046/zrzyyg.2020397.
doi: 10.6046/zrzyyg.2020397
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[3] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[4] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[5] WANG Yiru, WANG Guanghui, YANG Huachao, LIU Huijie. A method for color consistency of remote sensing images based on generative adversarial networks[J]. Remote Sensing for Natural Resources, 2022, 34(3): 65-72.
[6] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[7] LIU Guangjin, WANG Guanghui, BI Weihua, LIU Huijie, YANG Huachao. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources, 2022, 34(2): 88-96.
[8] WANG Huajun, GE Xiaosan. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 128-135.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[11] LIU Wanjun, GAO Jiankang, QU Haicheng, JIANG Wentao. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech