Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 105-111     DOI: 10.6046/zrzyyg.2022100
|
Improved 3D-CNN-based method for surface feature classification using hyperspectral images
ZHENG Zongsheng(), LIU Haixia(), WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei
Department of Information, Shanghai Ocean University, Shanghai 201306, China
Download: PDF(3282 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Hyperspectral images are characterized by large data volumes, multiple bands, and strong interband correlation. Conventional classification methods using hyperspectral images usually consider only spectral or spatial information, while suffering insufficient feature extraction and ignoring the texture structures and important spectral information of images. Aiming at these problems, this study proposed a new classification method using hyperspectral images. First, multi-scale spatial-spectral data were processed based on the three-dimensional convolutional neural network (3D CNN), and a spectral attention mechanism was proposed by improving the dual attention mechanism. Then, the classification accuracy of surface features was further improved by adopting cross-layer feature fusion and multi-channel feature extraction strategies. In this study, 6 043 samples of two scenes of images captured by the GF-5 satellite were selected as experimental data. The proposed method was compared with five other methods, namely the support vector machine (SVM), the one-dimensional convolutional neural network (1D CNN), the two-dimensional convolutional neural network (2D CNN), the 3D CNN, and the residual network (ResNet). The results show that the method proposed in this study yielded significantly improved overall accuracy (OA) and Kappa coefficients with averages of 95.25% and 0.943, respectively. When applied to the dataset of Nantong, Jiangsu, this method yielded OA of up to 95.84%, which was 21.54, 21.71, 7.28, 3.94, and 2.56 percentage points higher than that of the five other methods, respectively.

Keywords hyperspectral image      surface feature classification      3D CNN      attention mechanism      feature fusion     
ZTFLH:  TP751  
Issue Date: 07 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zongsheng ZHENG
Haixia LIU
Zhenhua WANG
Peng LU
Xukun SHEN
Pengfei TANG
Cite this article:   
Zongsheng ZHENG,Haixia LIU,Zhenhua WANG, et al. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022100     OR     https://www.gtzyyg.com/EN/Y2023/V35/I2/105
Fig.1  Classification network structure of this paper
Fig.2  Triple attention mechanism structure
Fig.3  Feature fusion diagram
Fig.4  Remote sensing images of experimental data
类别 崇明数据集 南通数据集
耕地 784 538
建筑物 703 757
水体 461 603
泥滩 357 375
农田 505 960
总数 2 810 3 233
Tab.1  Number of samples in each dataset
Fig.5  Classification results of experimental data
模型 崇明数据集 南通数据集
OA/% Kappa OA/% Kappa
SVM 74.18 0.697 74.30 0.680
1D CNN 70.61 0.622 74.13 0.677
2D CNN 88.15 0.849 88.56 0.854
3D CNN 90.83 0.876 91.90 0.893
ResNet 92.17 0.900 93.28 0.914
本文方法 95.21 0.939 95.84 0.947
Tab.2  Comparison results of different methods
Fig.6  Classification results of the Chongming dataset of different models
卷积核个数 崇明数据集 南通数据集
OA/% Kappa OA/% Kappa
8 95.01 0.937 95.58 0.944
16 95.21 0.939 95.84 0.947
32 93.23 0.914 94.92 0.935
40 93.89 0.922 94.08 0.924
Tab.3  Comparison results of different number of convolution kernels
[1] 叶珍, 白璘, 何明一. 高光谱图像空谱特征提取综述[J]. 中国图象图形学报, 2021, 26(8):1737-1763.
[1] Ye Z, Bai L, He M Y. Overview of spatial spectrum feature extraction of hyperspectral images[J]. Chinese Journal of image and graphics, 2021, 26(8):1737-1763.
[2] 王振华, 张鑫月, 刘智翔, 等. 遥感地物分割的改进格子玻尔兹曼并行模型[J]. 遥感信息, 2021, 36(4):1-6.
[2] Wang Z H, Zhang X Y, Liu Z X, et al. Improved lattice Boltzmann parallel model for remote sensing ground object segmentation[J]. Remote Sensing Information, 2021, 36(4):1-6.
[3] 涂兵, 张晓飞, 张国云, 等. 递归滤波与KNN的高光谱遥感图像分类方法[J]. 国土资源遥感, 2019, 31(1):22-32.doi:10.6046/gtzyyg.2019.01.04.
doi: 10.6046/gtzyyg.2019.01.04
[3] Tu B, Zhang X F, Zhang G Y, et al. Hyperspectral remote sensing image classification method based on recursive filtering and KNN[J]. Remote Sensing of Land and Resources, 2019, 31(1):22-32.doi: 10.6046/gtzyyg.2019.01.04.
doi: 10.6046/gtzyyg.2019.01.04
[4] Peng J, Zhou Y, Chen C. Region-kernel-based support vector machines for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9):4810-4824.
doi: 10.1109/TGRS.2015.2410991 url: http://ieeexplore.ieee.org/document/7080913/
[5] Peng J, Li L, Tang Y Y. Maximum likelihood estimation-based joint sparse representation for the classification of hyperspectral remote sensing images[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30:1790-1802.
doi: 10.1109/TNNLS.5962385 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
[6] Chen G Y. Multiscale filter-based hyperspectral image classification with PCA and SVM[J]. Journal of Electrical Engineering, 2021, 72(1):40-45.
doi: 10.2478/jee-2021-0006 url: https://www.sciendo.com/article/10.2478/jee-2021-0006
[7] 梁亮, 杨敏华, 李英芳. 基于ICA与SVM算法的高光谱遥感影像分类[J]. 光谱学与光谱分析, 2010, 30(10):2724-2728.
pmid: 21137408
[7] Liang L, Yang M H, Li Y F. Hyperspectral remote sensing image classification based on ICA and SVM algorithm[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2724-2728.
pmid: 21137408
[8] 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090.
[8] Zhang B. Hyperspectral image processing and information extraction frontier[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.
[9] Tong L, Zhang J, Ye Z. Classification of hyperspectral image based on deep belief networks[C]// 2014 IEEE International Conference on Image Processing (ICIP), 2014:5132-5136.
[10] Zabalza J, Ren J C, Zheng J B, et al. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging[J]. Neurocomputing, 2016, 185:1-10.
doi: 10.1016/j.neucom.2015.11.044 url: https://linkinghub.elsevier.com/retrieve/pii/S0925231215017798
[11] Hu W, Huang Y Y, Wei L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015:1-12.
[12] Zhao W, Du S. Learning multiscale and deep representations for classifying remotely sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 113:155-165.
doi: 10.1016/j.isprsjprs.2016.01.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616000137
[13] Yue J, Zhao W, Mao S, et al. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks[J]. Remote Sensing Letters, 2015, 6(4-6):468-477.
doi: 10.1080/2150704X.2015.1047045 url: http://www.tandfonline.com/doi/full/10.1080/2150704X.2015.1047045
[14] Ghamisi P, Chen Y, Xiao X Z. A self-improving convolution neural network for the classification of hyperspectral data[J]. IEEE Geoence and Remote Sensing Letters, 2017, 13(10):1537-1541.
[15] Makantasis K, Karantzalos K, Doulamis A, et al. Deep supervised learning for hyperspectral data classifification through convolutional neural networks[J]. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2015:4959-4962.
[16] Li Y, Zhang H K, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.
doi: 10.3390/rs9010067 url: http://www.mdpi.com/2072-4292/9/1/67
[17] Woo S, Park J, Lee J, et al. CBAM:Convolutional block attention module[J]. Springer, 2018, 11211:3-19.
[18] Sun H, Zheng X T, Lu X Q, et al. Spectral-spatial attention network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5):3232-3245.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[19] Hang R L, Li Z, Liu Q S, et al. Hyperspectral image classification with attention-aided CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2281-2293.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[20] Ji S W, Xu W, Yang M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):221-231.
pmid: 22392705
[21] 韩彦岭, 崔鹏霞, 杨树瑚, 等. 基于残差网络特征融合的高光谱图像分类[J]. 国土资源遥感, 2021, 33(2) :11-19.doi:10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
[21] Han Y L, Cui P X, Yang S H, et al. Classification of hyperspectral images based on feature fusion of residual network[J]. Remote Sensing for Land and Resources, 2021, 33(2) :11-19.doi:10.6046/gtzyyg.2020209.
doi: 10.6046/gtzyyg.2020209
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[3] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[4] JIN Yuanhang, XU Maolin, ZHENG Jiayuan. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
[5] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[6] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[7] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[8] WANG Yiru, WANG Guanghui, YANG Huachao, LIU Huijie. A method for color consistency of remote sensing images based on generative adversarial networks[J]. Remote Sensing for Natural Resources, 2022, 34(3): 65-72.
[9] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[10] LIU Guangjin, WANG Guanghui, BI Weihua, LIU Huijie, YANG Huachao. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources, 2022, 34(2): 88-96.
[11] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[12] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[13] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[14] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[15] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech