Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (3) : 43-49     DOI: 10.6046/zrzyyg.2021215
|
Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method
SUN Xiao1(), XU Linlin2(), WANG Xiaoyang1, TIAN Ye1, WANG Wei1, ZHANG Zhongyue1
1. Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000, China
2. School of Land Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China
Download: PDF(3634 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

An effective unmixing method of hyperspectral mixed pixels can improve the precision of mineral information extraction. To further study such unmixing methods, this study explained the imaging mechanism of hyperspectral images using a linear spectral mixing model. The linear combinations of different mineral endmembers were used to express mixed pixels. The expected maximum (EM) algorithm was used to estimate the endmembers and abundance of mixed pixels under the framework of maximum likelihood estimation. A robust K-P-Means algorithm based on a random sampling consensus algorithm was proposed to improve the endmember optimization process, aiming to resist the impacts of anomalies on endmember extraction. The spectral angular distance and the spectral information divergence were used to assess the consistency between the estimated endmembers and the real endmembers. To obtain the similarity between the image and the original image, the structural similarity and the peak signal-to-noise ratio were used to measure the estimated abundance and endmembers. Various simulation data indicators show that the optimized model can obtain more precise estimations of endmembers and abundance. The mineral types were determined by matching the extracted endmembers with the mineral spectrum curves provided by the USGS spectral library. The actual data originated from the Cuprite data set of the AVIRIS hyperspectral sensor for the Nevada copper mining area. The results of mineral extraction showed that the model proposed in this study yielded satisfactory recognition results for eight types of main minerals including chlorite, which showed significant mineral aggregation and were consistent with the actual situation. Therefore, the method proposed in this study can extract precise mineral information while effectively resisting the impacts of noise.

Keywords mineral      hyperspectral image      endmember      unmixing      robust     
ZTFLH:  P962  
Corresponding Authors: XU Linlin     E-mail: sunxiao@mail.cgs.gov.cn;linlinxu618@gmail.com
Issue Date: 21 September 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao SUN
Linlin XU
Xiaoyang WANG
Ye TIAN
Wei WANG
Zhongyue ZHANG
Cite this article:   
Xiao SUN,Linlin XU,Xiaoyang WANG, et al. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021215     OR     https://www.gtzyyg.com/EN/Y2022/V34/I3/43
Fig.1  Histogram of purified pixels
Fig.2  Schematic diagram of the principle of end-member optimization based on RANSAC
算法 SAD SID SSIM PSNR
K-P-Means 0.80 3.6 0.905 21.91
RR-K-P-Means 0.73 3.1 0.997 35.67
Tab.1  Comparison of image parameters before and after optimization
Fig.3  Real label and feature label determined by two algorithms before and after optimization
Fig.4  Comparison of estimated endmembers, abundance and true value after optimization
Fig.5  Cuprite data sets of Nevada copper mining area
Fig.6  Estimated and true endmember values of nontronite
Fig.7  Estimated and true endmember values of jarosite
Fig.8  Abundance map of the identified 8 minerals
[1] 李根军, 杨雪松, 张兴, 等. ZY1-02D高光谱数据在地质矿产调查中的应用与分析[J]. 国土资源遥感, 2021, 33(2):134-140.doi: 10.6046/gtzyyg.2020190.
doi: 10.6046/gtzyyg.2020190
[1] Li G J, Yang X S, Zhang X, et al. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land and Resources, 2021, 33(2):134-140.doi: 10.6046/gtzyyg.2020190.
doi: 10.6046/gtzyyg.2020190
[2] 田青林, 潘蔚, 李瑶, 等. 基于小波包变换和权重光谱角度制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4):41-46.doi: 10.6046/gtzyyg.2019.04.06.
doi: 10.6046/gtzyyg.2019.04.06
[2] Tian Q L, Pan W, Li Y, et al. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land and Resources, 2019, 31(4):41-46.doi: 10.6046/gtzyyg.2019.04.06.
doi: 10.6046/gtzyyg.2019.04.06
[3] 张帅洋, 华文深, 应家驹, 等. 高光谱线性解混研究进展[J]. 激光杂志, 2021, 42(3):17-21.
[3] Zhang S Y, Hua W S, Ying J J, et al. Research on the development of hyperspectral linear unmixing[J]. Laser Journal, 2021, 42(3):17-21.
[4] 甘甫平, 王润生, 马蔼乃. 基于特征谱带的高光谱遥感矿物谱系识别[J]. 地学前缘, 2003, 10(2):445-454.
[4] Gan F P, Wang R S, Ma A N. Spectral identification tree(SIT) for mineral extraction based on spectral characteristics of minerals[J]. Earth Science Frontiers, 2003, 10(2):445-454.
[5] 张川, 叶发旺, 徐清俊, 等. 新疆白杨河铀铍矿区航空高光谱矿物填图及蚀变特征分析[J]. 国土资源遥感, 2017, 29(2):160-166.doi: 10.6046/gtzyyg.2017.02.23.
doi: 10.6046/gtzyyg.2017.02.23
[5] Zhang C, Ye F W, Xu Q J, et al. Mineral mapping and analysis of alteration characteristics using airborne hyperspectral remote sensing data in the Baiyanghe uranium and beryllium ore district,Xinjiang[J]. Remote Sensing for Land and Resources, 2017, 29(2):160-166.doi: 10.6046/gtzyyg.2017.02.23.
doi: 10.6046/gtzyyg.2017.02.23
[6] Chaudhry F, Wu C C, Liu W M, et al. Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery[J]. Recent Advances in Hyperspectral Signal and Image Processing, 2006:29-62.
[7] Winter M E. Comparison of approaches for determining endmembers in hyper-spectral data[C]// IEEE Aerospace Conference Proceedings.IEEE, 2000(3):305-313.
[8] Nascimento J M P, Dias J M B. Vertex component analysis:A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):898-910.
doi: 10.1109/TGRS.2005.844293 url: http://ieeexplore.ieee.org/document/1411995/
[9] 吴波, 汪小钦, 张良培. 端元光谱自动提取的总体最小二乘迭代分解[J]. 武汉大学学报(信息科学版), 2008, 33(5):457-460.
[9] Wu B, Wang X Q, Zhang L P. Iterative abstraction of endmember based on total least square for mixture pixel decomposition[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5):457-460.
[10] Roberts D A, Gardner M, Church R, et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models[J]. Remote Sensing of Environment, 1998, 65(3):267-279.
doi: 10.1016/S0034-4257(98)00037-6 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425798000376
[11] Asner G P, Lobell D B. A biogeophysical approach for automated SWIR unmixing of soils and vegetation[J]. Remote Sensing of Environment, 2000, 74(1):99-112.
doi: 10.1016/S0034-4257(00)00126-7 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425700001267
[12] Song C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment:How to incorporate endmember variability?[J]. Remote Sensing of Environment, 2005, 95(2):248-263.
doi: 10.1016/j.rse.2005.01.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425705000271
[13] 吴柯, 张良培, 李平湘. 一种端元变化的神经网络混合像元分解方法[J]. 遥感学报, 2007, 11(1):20-26.
[13] Wu K, Zhang L P, Li P X. A neural network method of selective endmember for pixel unmixing[J]. Journal of Remote Sensing, 2007, 11(1):20-26.
[14] 林红磊, 张霞, 孙艳丽. 基于单次散射反照率的矿物高光谱稀疏解混[J]. 遥感学报, 2016, 20(1):53-61.
[14] Lin H L, Zhang X, Sun Y L. Hyperspectral sparse unmixing of minerals with single scattering albedo[J]. Journal of Remote Sensing, 2016, 20(1):53-61.
[15] Xu L L, Li J, Wong A, et al. K-P-Means:A clustering algorithm of K “Purified” Means for hyperspectral endmember estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1787-1791.
doi: 10.1109/LGRS.2014.2309340 url: http://ieeexplore.ieee.org/document/6779599/
[16] Fischler M A, Bolles R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395.
doi: 10.1145/358669.358692 url: https://dl.acm.org/doi/10.1145/358669.358692
[17] 王润生, 杨苏明, 阎柏琨. 成像光谱矿物识别方法与识别模型评述[J]. 国土资源遥感, 2007, 19(1):1-9.doi: 10.6046/gtzyyg.2007.01.01.
doi: 10.6046/gtzyyg.2007.01.01
[17] Wang R S, Yang S M, Yan B K. A review of mineral spectral identification methods and models with imaging spectrometer[J]. Remote Sensing for Land and Resources, 2007, 19(1):1-9.doi: 10.6046/gtzyyg.2007.01.01.
doi: 10.6046/gtzyyg.2007.01.01
[18] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society(Series B), 1977, 39(1):1-38.
[19] Lawson C L, Hanson R J. Solving least squares problems[M]. Englewood Cliffs: Prentice-Hall, 1974:161.
[20] 郭继东, 向辉. 一个基本矩阵的鲁棒估计算法[J]. 计算机应用, 2005, 25(12):2845-2848.
[20] Guo J D, Xiang H. A robust method for estimating the fundamental matrix[J]. Computer Applications, 2005, 25(12):2845-2848.
[21] Chang C I, Heinz D C. Constrained subpixel detection for remotely sensed images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3):1144-1159.
doi: 10.1109/36.843007 url: http://ieeexplore.ieee.org/document/843007/
[22] Zhou W, Alan C B, Hamid R S, et al. Image quality assessment:From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
pmid: 15376593
[23] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13):800-801.
doi: 10.1049/el:20080522 url: https://digital-library.theiet.org/content/journals/10.1049/el_20080522
[1] ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County[J]. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
[2] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[3] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[4] LI Na, GAN Fuping, DONG Xinfeng, LI Juan, ZHANG Shifan, LI Tongtong. Investigation and applications of rocky desertification based on GF-5 hyperspectral data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 230-235.
[5] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[6] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[7] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[8] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[9] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[10] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[11] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[12] LI Genjun, YANG Xuesong, ZHANG Xing, LI Xiaomin, LI Delin, DU Cheng. Application and analysis of ZY1-02D hyperspectral data in geological and mineral survey[J]. Remote Sensing for Land & Resources, 2021, 33(2): 134-140.
[13] ZHAO Yi, XU Jianhui, ZHONG Kaiwen, WANG Yunpeng, HU Hongda, WU Pinghao. Impervious surface extraction based on Sentinel-2A and Landsat8[J]. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
[14] JIANG Xiao, LU Yunge, SUN Ang, LI Yongzhi, LIAN Zheng. The application of domestic GF-1 satellite data to geological and mineral resources survey abroad: A case study of Faryab area, Iran[J]. Remote Sensing for Land & Resources, 2021, 33(1): 199-204.
[15] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech