Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 87-96     DOI: 10.6046/zrzyyg.2022101
|
Temporal-spatial changes and driving analysis of the northern shorelines of Jiaodong Peninsula
ZHAO Lianjie1(), WU Mengquan1(), ZHENG Longxiao1, LUAN Shaopeng2, ZHAO Xianfeng3, XUE Mingyue1, LIU Jiayan1, LIU Chenxi4
1. School of Resources and Environmental Engineering, Ludong University, Yantai 264039, China
2. Yantai Geographic Information Center, Yantai 264000, China
3. Yantai Land Reserve and Use Centre, Yantai 264000, China
4. School of Earth Sciences, Yangtze University, Wuhan 430100, China
Download: PDF(3575 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Dynamic shoreline monitoring is greatly significant for the scientific management of coastal zones and the rational utilization of marine resources. Based on the Landsat remote sensing images of four periods i.e., 1990, 2000, 2010, and 2020, this study extracted the changes in the shorelines and the coastal zones within the 2 km of the buffer zone in the north of Jiaodong Peninsula from 1990 to 2020 by making comparison and using an object-oriented method. By combining the calculation method for shoreline change intensity, this study analyzed the changing rate and temporal-spatial distribution characteristics of the shorelines using the digital shoreline analysis system (DSAS). Then, this study conducted a driving analysis of changes in the shoreline by constructing a human activity intensity index (HAII) model. The results are as follows. The shorelines of the study area generally showed an upward trend and advanced slowly to the seaside. The overall length of the shorelines increased by 183.13 km. The highest increased and decreased amplitude occurred in artificial shorelines and sandy natural shorelines, respectively. The shoreline changing rates showed uneven temporal-spatial distribution. The maximum growth rate of 94.59 m/a occurred in the Jiaolai River - Jiehe River section, while the maximum erosion rate of -49.01 m/a occurred in the Jiehe River - Dagujia River section. The changes in offshore human activities were the main contributor to the temporal-spatial changes of coastlines in the study area. The lengths and types of shorelines were mainly affected by human activities through sea reclamation and port construction.

Keywords object oriented      SVM      DSAS      temporal and spatial changes      human activity intensity index     
ZTFLH:  P237  
  P74  
  P737.1  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lianjie ZHAO
Mengquan WU
Longxiao ZHENG
Shaopeng LUAN
Xianfeng ZHAO
Mingyue XUE
Jiayan LIU
Chenxi LIU
Cite this article:   
Lianjie ZHAO,Mengquan WU,Longxiao ZHENG, et al. Temporal-spatial changes and driving analysis of the northern shorelines of Jiaodong Peninsula[J]. Remote Sensing for Natural Resources, 2022, 34(4): 87-96.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022101     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/87
Fig.1  Scope of study area
序号 卫星 传感器类型 轨道号/
行号
日期 空间分
辨率/m
1 Landsat5 TM 120/34 1990年 30
2 Landsat5 TM 120/34 2000年 30
3 Landsat5/7 TM/ETM+ 120/34 2010年 30
4 Landsat8 OLI 120/34 2020年 30
Tab.1  Parameter information of remote sensing satellite image data
分类对象 分类类别 类别特征 影像解译标志
海岸线 砂质岸线 主要在海风、海浪、潮汐、洋流的共同作用下堆积而成的海岸线 海岸线较为平直,退潮后露出的沙滩在影像上的亮度较低,没有被海水淹没过的沙滩亮度较高,主要表现为高低亮度沙砾间的分界线
淤泥质岸线 位于淤泥质或粉砂质泥滩的海岸线 滩面坡度平缓,向陆一侧通常有植物呈条带状生长
基岩岸线 通常由海岬和海湾组成,底部会长期受到海浪、潮汐的影响而不断侵蚀 光谱反射率偏低,影像上较为平直,干湿线表现较为明显
人工岸线 主要由混凝土、石头修筑而成,包括港口码头、近海养殖、构筑物、堤坝等建设用地的海岸线 在影像上具有较高的反射率,与具有较低反射率的海水形成鲜明的对比,地物形状规则,多为线状或块状
海岸带 农田 以种植作物为主的土地 具有规则的几何形状,整体分布较为集中
居住地 用于居住和商业区等的土地 分布较为密集,多呈块状聚集分布
道路 用来供各种车辆和行人通行的基础设施用地 整体呈网状分布,交错分布,多邻近建筑区
林草 主要包括林地、草地等植被类型覆盖的土地 颜色较深,呈不规则的块状或条带状分布
水域 指江河、湖泊、运河、渠道、水库、水塘及其管理范围和水工设施 反射率较低,在影像上颜色较深,表现明显
裸地 主要包括空闲地、荒地和未利用的裸地 基本无植物覆盖,反射率低于沙漠,颜色呈灰色
建设用地 主要包括临海港口建设、盐田建设、人工堆掘地等临海建设用地 反射率较高,建筑物色调呈白色,地物构成多样化,码头处凸出的构筑物多呈白色,细长突出
Tab.2  Construction of coastline and coastal zone classification
土地利用类型 农田 居住地 道路 林草 水域 裸地 建设用地
干扰强度系数 0.52 0.92 0.86 0.10 0.13 0.06 0.91
Tab.3  Interference intensity coefficient of each land use type factor
分类方法 海岸线类型
砂质岸
线
淤泥质
岸线
基岩岸
线
人工岸
线
基于阈值分割 6.84 28.56 18.47 14.56
基于面向对象 9.65 24.31 15.35 12.39
Tab.4  Error analysis results of water edge line and baseline extracted by different methods(m)
Fig.2  Spatial distribution of the northern coastline of Jiaodong Peninsula from 1990 to 2020
年份 自然岸线 人工岸线 研究区
总岸线
砂质岸线 淤泥质岸线 基岩岸线
1990年 213.44 6.36 48.12 139.24 407.16
2000年 173.18 5.91 37.31 217.14 433.54
2010年 150.15 5.48 39.35 282.57 477.55
2020年 170.08 5.08 40.61 374.52 590.29
Tab.5  Statistics on the length of various types of coastlines in the north of Jiaodong Peninsula from 1990 to 2020 (km)
时间段 海岸线区段 变化长度
/km
断面分布 断面个数 平均变化速率 最大增长速率 最大侵蚀速率 平均增长或侵蚀
EPR/(m·a-1) EPR/(m·a-1) EPR/(m·a-1) NSM/m
1990—2000年 A区段 -0.90 1—57 57 -1.58 90.00 -10.69 -15.78
B区段 20.10 57—137 81 0.53 40.76 -21.04 5.34
C区段 7.18 137—121 65 0.24 5.50 -9.32 2.35
2000—2010年 A区段 14.21 1—57 57 10.91 181.07 -6.05 109.11
B区段 18.88 57—137 81 4.05 58.61 -62.77 58.73
C区段 10.92 137—121 65 4.44 8.33 -18.03 44.32
2010—2020年 A区段 42.92 1—57 57 19.03 360.62 -4.12 171.24
B区段 82.39 57—137 81 13.57 204.49 -45.16 54.85
C区段 -12.57 137—121 65 -6.41 4.79 -36.93 -17.51
1990—2020年 A区段 56.23 1—57 57 6.12 94.59 -9.13 177.56
B区段 121.37 57—137 81 4.76 62.67 -49.01 138.20
C区段 5.53 137—121 65 -10.75 4.22 -21.96 -14.59
Tab.6  Spatial change trend of the northern coastline of Jiaodong Peninsula from 1990 to 2020
Fig.3  Spatial distribution of EPR of northern coastline of Jiaodong Peninsula from 1990 to 2020
Fig.4  Erosion types of different sections of the northern coastline of Jiaodong Peninsula from 1990 to 2020
方法 错分精度/% 漏分精度/% Kappa系数 总体精度/%
SVM 3.24 34.68 0.824 87.96
KNN 7.51 36.12 0.795 84.91
Tab.7  Comparison of accuracy of different classification extraction methods
Fig.5  Spatial distribution of HAII and changes of land use types in the northern coastal zone of Jiaodong Peninsula from 1990 to 2020
[1] 马小峰, 赵冬至, 张丰收, 等. 海岸线卫星遥感提取方法研究进展[J]. 遥感技术与应用, 2007, 22(4):575-580.
[1] Ma X F, Zhao D Z, Zhang F S, et al. Means of withdrawing coastline by remote sensing[J]. Remote Sensing Technology and Application, 2007, 22(4):575-580.
[2] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
[2] Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[3] 李加林, 田鹏, 邵姝遥, 等. 中国东海区大陆岸线变迁及其开发利用强度分析[J]. 自然资源学报, 2019, 34(9):1886-1901.
[3] Li J L, Tian P, Shao S Y, et al. The change of continental coastline and its development and utilization intensity in the East China Sea[J]. Journal of Natural Resources, 2019, 34(9):1886-1901.
doi: 10.31497/zrzyxb.20190907 url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20190907
[4] Zhou M, Wu M Q, Zhang G Z, et al. Analysis of voastal zone data of northern Yantai collected by remote sensing from 1990 to 2018[J]. Applied Sciences, 2019, 9(20):4466.
doi: 10.3390/app9204466 url: https://www.mdpi.com/2076-3417/9/20/4466
[5] 孙晓林, 吴孟泉, 田佳慧, 等. 近30年威海市海岸线时空变化及其驱动力[J]. 应用海洋学学报, 2019, 38(2):206-213.
[5] Sun X L, Wu M Q, Tian J H, et al. Driving forces and spatio-temporal variation of Weihai coastline in recent 30 years[J]. Journal of Applied Oceanography, 2019, 38(2):206-213.
[6] Dai C, Howat I M, Larour E, et al. Coastline extraction from repeat high resolution satellite imagery[J]. Remote Sensing of Environment, 2019, 229:260-270.
doi: 10.1016/j.rse.2019.04.010
[7] 姚晓静, 高义, 杜云艳, 等. 基于遥感技术的近30 a海南岛海岸线时空变化[J]. 自然资源学报, 2013, 28(1):114-125.
[7] Yao X J, Gao Y, Du Y Y, et al. Spatial and temporal changes of Hainan coastline in the past 30 years based on RS[J]. Journal of Natural Resources, 2013, 28(1):114-125.
[8] 刘百桥, 孟伟庆, 赵建华, 等. 中国大陆1990—2013年海岸线资源开发利用特征变化[J]. 自然资源学报, 2015, 30(12):2033-2044.
[8] Liu B Q, Meng W Q, Zhao J H, et al. Variation of coastline resources utilization in China from 1990 to 2013[J]. Journal of Natural Resources, 2015, 30(12):2033-2044.
[9] 王志成, 高志强, 尚伟涛, 等. 1987—2017年莱州湾沿岸土地利用变化及其对海岸线变化的影响[J]. 水土保持通报, 2021, 41(1):309-316,336.
[9] Wang Z C, Gao Z Q, Shang W T, et al. Land use change and it’s influence on coastline change along Laizhou Bay during 1987—2017[J]. Bulletin of Soil and Water Conservation, 2021, 41(1):309-316,336.
[10] 柏叶辉, 李洪忠, 李向新, 等. 1990年以来4个时期深圳市海岸线与海岸带景观格局及其对人类活动强度的响应[J]. 湿地科学, 2019, 17(3):335-343.
[10] Bo Y H, Li H Z, Li X X, et al. Landscape patterns of coastline and coastal zone in Shenzhen City and their responses to intensity of human activities for 4 periods since 1990[J]. Wetland Science, 2019, 17(3):335-343.
[11] 苗苗, 谢小平. 基于GIS和RS的山东日照海岸带1988—2018年间演化分析[J]. 国土资源遥感, 2021, 33(2):237-247.doi:10.6046/gtzyyg.2020229.
doi: 10.6046/gtzyyg.2020229
[11] Miao M, Xie X P. Spatial- temporal evolution analysis of Rizhao coastal zone during 1988—2018 based on GIS and RS[J]. Remote Sensing for Land and Resources, 2021, 33(2):237-247.doi:10.6046/gtzyyg.2020229.
doi: 10.6046/gtzyyg.2020229
[12] Mullick M R A, Islam K M A, Tanim A H. Shoreline change assessment using geospatial tools:A study on the Ganges deltaic coast of Bangladesh[J]. Earth Science Informatics, 2020, 13(2):99-316.
[13] Baral R, Pradhan S, Samal R N, et al. Shoreline change analysis at Chilika Lagoon Coast,India using digital shoreline analysis system[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(10):1637-1644.
doi: 10.1007/s12524-018-0818-7 url: https://doi.org/10.1007/s12524-018-0818-7
[14] 杨磊, 李加林, 袁麒翔, 等. 中国南方大陆海岸线时空变迁[J]. 海洋学研究, 2014, 32(3):42-49.
doi: 10.3969/j.issn.1001-909X.2014.03.006
[14] Yang L, Li J L, Yuan Q X, et al. Spatial-temporal changes of continental coastline in southern China[J]. Journal of Marine Sciences, 2014, 32(3):42-49.
doi: 10.3969/j.issn.1001-909X.2014.03.006
[15] 张旭凯, 张霞, 杨邦会, 等. 结合海岸类型和潮位校正的海岸线遥感提取[J]. 国土资源遥感, 2013, 25(4):91-97.doi:10.6046/gtzyyg.2013.04.15.
doi: 10.6046/gtzyyg.2013.04.15
[15] Zhang X K, Zhang X, Yang B H, et al. Coastline extraction using remote sensing based on coastal type and tidal correction[J]. Remote Sensing for Land and Resources, 2013, 25(4):91-97.doi:10.6046/gtzyyg.2013.04.15.
doi: 10.6046/gtzyyg.2013.04.15
[16] 段秋亚, 孟令奎, 樊志伟, 等. GF-1卫星影像水体信息提取方法的适用性研究[J]. 国土资源遥感, 2015, 27(4):79-84.doi:10.6046/gtzyyg.2015.04.13.
doi: 10.6046/gtzyyg.2015.04.13
[16] Duan Q Y, Meng L K, Fan Z W, et al. Applicability of the water information extraction method based on GF-1 image[J]. Remote Sensing for Land and Resources, 2015, 27(4):79 -84.doi:10.6046/gtzyyg.2015.04.13.
doi: 10.6046/gtzyyg.2015.04.13
[17] 王彩艳, 王瑷玲, 王介勇, 等. 基于面向对象的海岸带土地利用信息提取研究[J]. 自然资源学报, 2014, 29(9):1589-1597.
[17] Wang C Y, Wang A L, Wang J Y, et al. Coastal zone land use information extraction based on object-oriented classification method[J]. Journal of Natural Resources, 2014, 29(9):1589-1597.
[18] 原晓慧, 王萍, 张英, 等. 基于边缘检测的海岸线自动提取研究[J]. 北京测绘, 2019, 33(2):148-152.
[18] Yuan X H, Wang P, Zhang Y, et al. Research on edge detection and object-oriented for automatic extraction of coastline[J]. Beijing Surveying and Mapping, 2019, 33(2):148-152.
[19] 张翔, 王霄鹏, 黄安齐, 等. 基于遥感影像提取山东半岛复杂海岸线及海岸线多年变迁研究[J]. 海洋湖沼通报, 2021, 43(2):171-181.
[19] Zhang X, Wang X P, Huang A Q, et al. Extraction of complex coastline feature and it’s multi-year changes in Shandong Peninsula based on remote sensing image[J]. Transactions of Oceanology and Limnology, 2021, 43(2):171-181.
[20] 吴琳娜, 杨胜天, 刘晓燕, 等. 1976年以来北洛河流域土地利用变化对人类活动程度的响应[J]. 地理学报, 2014, 69(1):54-63.
[20] Wu L N, Yang S T, Liu X Y, et al. Response analysis of land use change to the degree of human activities in Beiluo River basin since 1976[J]. Journal of Geographical Sciences, 2014, 69(1):54-63.
[21] 陈浮, 陈刚, 包浩生, 等. 城市边缘区土地利用变化及人文驱动力机制研究[J]. 自然资源学报, 2001, 16(3):204-210.
[21] Chen F, Chen G, Bao H S, et al. Analysis on land use change and human driving force in urban fringe[J]. Journal of Natural Resources, 2001, 16(3):204-210.
[22] 梁发超, 刘黎明. 景观格局的人类干扰度定量分析与生态功能区优化初探:以福建省闽清县为例[J]. 资源科学, 2011, 33(6):1138-1144.
[22] Liang F C, Liu L M. Quantitative analysis of human disturbance intensity of landscape ptterns and preliminary optimization of ecological function regions:A case of Minqing County in Fujian Province[J]. Resources Science, 2011, 33(6):1138-1144.
[23] 徐勇, 孙晓一, 汤青. 陆地表层人类活动强度:概念、方法及应用[J]. 地理学报, 2015, 70(7):1068-1079.
doi: 10.11821/dlxb201507004
[23] Xu Y, Sun X Y, Tang Q. Human activity intensity of land surface:Concept,method and application in China[J]. Journal of Geographical Sciences, 2015, 70(7):1068-1079.
[24] 李振鹏, 刘黎明, 谢花林. 乡村景观分类的方法探析:以北京市海淀区白家疃村为例[J]. 资源科学, 2005, 27(2):167-173.
[24] Li Z P, Liu L M, Xie H L. Methodology of rural landscape classification:A case study in Baijiatuan Village Haidian District,Beijing[J]. Resources Science, 2005, 27(2):167-173.
[25] 贾艳艳, 唐晓岚, 张卓然. 长江中下游流域自然保护地空间分布及其与人类活动强度关系研究[J]. 世界地理研究, 2020, 29(4):845-855.
doi: 10.3969/j.issn.1004-9479.2020.04.2019131
[25] Jia Y Y, Tang X L, Zhang Z R. Distribution of nature protected areas and its relationship with human activity intensity in the middle and lower reaches of the Yangtze River basin[J]. World Regional Studies, 2020, 29(4):845-855.
doi: 10.3969/j.issn.1004-9479.2020.04.2019131
[26] 孙贵芹, 徐艳东, 林蕾, 等. 基于遥感和GIS的烟台芝罘湾海岸线变迁研究[J]. 海洋科学进展, 2020, 38(1):140-152.
[26] Sun G Q, Xu Y D, Lin L, et al. Coastline changes in the Zhifu Bay of Yantai City based on remote sensing and GIS[J]. Advances in Marine Science, 2020, 38(1):140-152.
[1] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[2] MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
[3] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
[4] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[5] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[6] SU Longfei, LI Zhengxuan, GAO Fei, YU Min. A review of remote sensing image water extraction[J]. Remote Sensing for Land & Resources, 2021, 33(1): 9-11.
[7] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[8] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[9] Ning MAO, Huiping LIU, Xiangping LIU, Yanghua ZHANG. Optimal scale selection for multi-scale segmentation based on RMNE method[J]. Remote Sensing for Land & Resources, 2019, 31(2): 10-16.
[10] Yang ZHOU, Yunsheng ZHANG, Siyang CHEN, Zhengrong ZOU, Yaochen ZHU, Ruixue ZHAO. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land & Resources, 2019, 31(2): 44-50.
[11] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[12] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[13] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[14] Yiqun HU, Shaoguang ZHOU, Shun YUE, Xiaoqing LIU. Remote sensing image retrieval based on sparse local invariant features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 38-44.
[15] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech