Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 203-215     DOI: 10.6046/zrzyyg.2021254
|
Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America
MAO Kebiao1,2(), YAN Yibo1, CAO Mengmeng1, YUAN Zijin2, QIN Zhihao1
1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
2. School of Physics and Electronic-Engineering, Ningxia University, Yinchuan 750021, China
Download: PDF(8922 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Surface temperature is an important indicator that reflects the regional natural environment and climate changes. High-quality data are very valuable for the study of the temporal and spatial changes in regional surface temperature. In recent years, North America has witnessed relatively abnormal climate changes, thus the surface temperature in this region has great study significance. Based on the MODIS surface temperature data, this study reconstructed the remotely sensed surface temperature data set of North America from 2002 to 2018 and analyzed the spatial and temporal changes in surface temperature over the past 17 years. The reconstructed surface temperature data cover all land surfaces of North America and guarantee precision of about 1 ℃. The analysis results are as follows. North America had a fluctuating temperature increase at an average rate of 0.02 ℃/a in the past 17 years. A historical peak in surface temperature increase occurred in 2016, followed by a sharp drop in the following two years, which was closely related to El Nino. In North America, the temperature increase was greater in spring and autumn than in winter and summer. In recent years, northern Alaska and the Baja California peninsula have experienced significant warming. Vegetation and atmospheric water vapor significantly affect the change in surface temperature. Vegetation and atmospheric water vapor are positively correlated with surface temperature in the north of 40°N, while they are negatively correlated in the south of 40°N. The general changing trend of surface temperature in the next 1~2 years can be predicted to a certain degree of reliability according to the periodic fluctuation trend of the average surface temperature in North America and the influence of El Nino.

Keywords data reconstruction      surface temperature      MODIS      temporal and spatial changes     
ZTFLH:  TP79  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kebiao MAO
Yibo YAN
Mengmeng CAO
Zijin YUAN
Zhihao QIN
Cite this article:   
Kebiao MAO,Yibo YAN,Mengmeng CAO, et al. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021254     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/203
Fig.1  Study Area
类型 数据名称 时间分
辨率
空间分
辨率/(°)
NDVI MOD11C2 月尺度 0.05
SM 被动微波土壤水分 月尺度 0.05
AOD MOD08_M3 月尺度 1
云量 MOD08_M3 月尺度 1
大气水汽含量 MOD08_M3 月尺度 1
Tab.1  Introduction of other remote sensing data
Fig.2  Flow chart of data restoration technology
Fig.3  Validation of reconstructed data
Fig.4  Average surface temperature of North America from 2002 to 2018
Fig.5  Average surface temperature of North America in the four seasons from 2002 to 2018
指标 春季 夏季 秋季 冬季
平均值 1.03 15.72 2.63 -11.62
最大值 37.34 45.55 32.68 31.43
最小值 -36.49 -17.71 -38.82 -49.33
最大温度差 73.83 63.16 70.99 80.76
标准差 16.47 11.15 15.01 17.75
Tab.2  Some statistical indicators of the average surface temperature in the four seasons in North America (℃)
Fig.6  Variation trends of surface temperature in different time dimensions
Fig.7  Correlation coefficients between day and night surface temperature and time changes in North America
Fig.8  Interannual change rate of day and night surface temperature in North America
Fig.9  Pearson’s coefficient of the average land temperature in different seasons in North America
Fig.10  Inter annual change rate of average land temperature in different seasons in North America
Fig.11  Interannual change rate of the annual mean surface temperature in North America and its significance over time
Fig.12  Correlation coefficients between surface temperature and other parameters
指标 NDVI SM AOD 云量 大气水汽含量
平均值 0.43 0.23 0.15 0.30 0.48
最大值 0.98 0.89 0.63 0.89 0.87
Tab.3  Statistics of correlation coefficients of absolute values of 5 types other parameters
Fig.13  Anomaly between the annual average surface temperature of North America and the average surface temperature of each month in 2019
[1] Anderson M C, Norman J M, Kustas W P, et al. A thermal-based remote sensing technique for routine mapping of land-surface carbon,water and energy fluxes from field to regional scales[J]. Remote Sensing of Environment, 2008, 112:4227-4241.
doi: 10.1016/j.rse.2008.07.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425708002289
[2] 唐国利, 任国玉. 近百年中国地表气温变化趋势的再分析[J]. 气候与环境研究, 2005(4):791-798.
[2] Tang G L, Ren G Y. Reanalysis of surface air temperature change of the last 100 years over China[J]. Climatic and Environmental Research, 2005(4):791-798.
[3] Brunsell N A, Gillies R R. Length scale analysis of surface energy fluxes derived from remote sensing[J]. Journal of Hydrometeorology, 2003, 4(6):1212-1219.
doi: 10.1175/1525-7541(2003)004<1212:LSAOSE>2.0.CO;2 url: http://journals.ametsoc.org/doi/10.1175/1525-7541(2003)004&lt;1212:LSAOSE&gt;2.0.CO;2
[4] 毛克彪, 左志远, 朱高峰, 等. 全球气候和生态系统变化与星体轨道位置变化关系研究[J]. 高技术通讯, 2016, 26(11):890-899.
[4] Mao K B, Zuo Z Y, Zhu G F, et al. Study of the relationship between global climate-ecosystem’s change and planetary orbit position’s change[J]. High Technology Letters, 2016, 26(11):890-899.
[5] 王建凯, 王开存, 王普才. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析[J]. 遥感学报, 2007(3):330-339.
[5] Wang J K, Wang K C, Wang P C. Urban heat (or cool) island over Beijing from MODIS land surface temperature[J]. Journal of Remote Sensing, 2007(3):330-339.
[6] Guo J, Mao K, Zhao Y, et al. Impact of climate on food security in Mainland China:A new perspective based on characteristics of major agricultural natural disasters and grain loss[J]. Sustainability, 2019, 869(11):1-25.
[7] Hall D K, Williams R S, Luthcke S B, et al. Greenland ice sheet surface temperature,melt and mass loss:2000—06[J]. Journal of Glaciology, 2008, 54(184):81-93.
doi: 10.3189/002214308784409170 url: https://www.cambridge.org/core/product/identifier/S0022143000209878/type/journal_article
[8] Xia L, Zhao F, Mao K, et al. SPI-based analyses of drought changes over the past 60 years in China’s major crop-growing areas[J]. Remote Sensing, 2018, 171(10):1-15.
[9] Westerling A L. Warming and earlier spring increase western U.S.forest wildfire activity[J]. Science, 2006, 313(5789):940-943.
doi: 10.1126/science.1128834 pmid: 16825536
[10] Ouzounov D, Freund F T. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data[J]. Advances in Space Research, 2004, 33(3):268-273.
doi: 10.1016/S0273-1177(03)00486-1 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117703004861
[11] 任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 6:942-956.
[11] Ren G Y, Guo J, Xu M Z, et al. Climate change of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 6:942-956.
[12] Zhao B, Mao K, Cai Y, et al. A combined Terra and Aqua MODIS land surface temperature and meteorological station data product for China from 2003—2017[J]. Earth System Science Data, 2020, 12:2555-2577.
doi: 10.5194/essd-12-2555-2020 url: https://essd.copernicus.org/articles/12/2555/2020/
[13] Mao K, Ma Y, Tan X, et al. Global surface temperature change analysis based on MODIS data in recent twelve years[J]. Advance Space Research, 2017, 59:503-512.
doi: 10.1016/j.asr.2016.11.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0273117716306330
[14] Neteler M. Estimating daily land surface temperatures in mountainous environments by reconstructed MODIS LST data[J]. Remote Sensing, 2010, 2(1):333-351.
doi: 10.3390/rs1020333 url: http://www.mdpi.com/2072-4292/2/1/333
[15] Shen H, Li X, Cheng Q, et al. Missing information reconstruction of remote sensing data:A technical review[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(3):61-85.
[16] Zhao L, Jin J, Wang S Y, et al. Integration of remote-sensing data with WRF to improve lake-effect precipitation simulations over the Great Lakes region[J]. Journal of Geophysical Research Atmospheres, 2012, 117(d9):1-12.
[17] Mao K, Ma Y, Xia L, et al. Global aerosol change in the last decade:An analysis based on MODIS data[J]. Atmospheric Environment, 2014, 94:680-686.
doi: 10.1016/j.atmosenv.2014.04.053 url: https://linkinghub.elsevier.com/retrieve/pii/S1352231014003252
[18] Cao M, Mao K, Yan Y, et al. A new global gridded sea surface temperature data product based on multisource data[J]. Earth System Science Data, 2021, 13:2111-2134.
doi: 10.5194/essd-13-2111-2021 url: https://essd.copernicus.org/articles/13/2111/2021/
[19] Kerr Y H, Lagouarde J P, Imbernon J. Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm[J]. Remote Sensing of Environment, 1992, 41:197-209.
doi: 10.1016/0034-4257(92)90078-X url: https://linkinghub.elsevier.com/retrieve/pii/003442579290078X
[20] Mao K, Shi J, Li Z, et al. An RM-NN algorithm for retrieving land surface temperature and emissivity from EOS/MODIS data[J]. Journal of Geophysical Research-Atmosphere, 2007, 112(d21):1-17.
[21] Pepin N, Bradley R S, Diaz H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5:424-430.
doi: 10.1038/nclimate2563 url: https://doi.org/10.1038/nclimate2563
[22] Halliday W E D. Climate,soils and forests of Canada[J]. Forestry Chronicle, 1950, 26:287-301.
doi: 10.5558/tfc26287-4 url: http://pubs.cif-ifc.org/doi/10.5558/tfc26287-4
[23] Mao K, Qin Z, Shi J, et al. A practical split-window algorithm for retrieving land surface temperature from MODIS data[J]. International Journal of Remote Sensing, 2005, 26:3181-3204.
doi: 10.1080/01431160500044713 url: https://www.tandfonline.com/doi/full/10.1080/01431160500044713
[24] Mao K, Shi J, Tang J, et al. A neural network technique for separating land surface emissivity and temperature from ASTER imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):200-208.
doi: 10.1109/TGRS.2007.907333 url: http://ieeexplore.ieee.org/document/4407630/
[25] Xia L, Mao K, Ma Y, et al. An algorithm for retrieving land surface temperature using VIIRS data in combination with multi-sensors[J]. Sensors, 2014, 14:21385-21408.
doi: 10.3390/s141121385 url: http://www.mdpi.com/1424-8220/14/11/21385
[26] Wan Z, Dozier J. A generalized split-window algorithm for retrieving land-surface temperature from space[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(4):892-905.
doi: 10.1109/36.508406 url: http://ieeexplore.ieee.org/document/508406/
[27] Wan Z, Li Z L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):980-996.
doi: 10.1109/36.602541 url: http://ieeexplore.ieee.org/document/602541/
[28] Fang S, Mao K, Xia X, et al. Dataset of daily near-surface air temperature in China from 1979 to 2018[J]. Earth System Science Data, 2022, 14:1413-1432.
doi: 10.5194/essd-14-1413-2022 url: https://essd.copernicus.org/articles/14/1413/2022/
[29] Wang P, Mao K, Meng F, et al. A daily highest air temperature estimation method and spatial-temporal changes analysis of high temperature in China from 1979 to 2018[J]. Geoscientific Model Development, 2022, 15:6059-6083.
doi: 10.5194/gmd-15-6059-2022 url: https://gmd.copernicus.org/articles/15/6059/2022/
[30] Hansen J, Lebedeff S. Global trends of measured surface air temperature[J]. Journal of Geophysical Research Atmospheres, 1987, 92(d11):13345-13372.
doi: 10.1029/JD092iD11p13345 url: http://doi.wiley.com/10.1029/JD092iD11p13345
[31] Julien Y, Sobrino J A, Verhoef W. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sensing of Environment, 2006, 103(1):43-55.
doi: 10.1016/j.rse.2006.03.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425706001246
[32] Wang H, Mao K, Yuan Z, et al. A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning[J]. Remote Sensing of Environment, 2021, 265:1-19.
[33] Remer L A, Kleidman R G, Levy R C, et al. Global aerosol climatology from the MODIS satellite sensors[J]. Journal of Geophysical Research, 2008, 113(d14):1-18.
[34] Platnick S. The MODIS cloud products:Algorithms and examples from Terra[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2):459-473.
doi: 10.1109/TGRS.2002.808301 url: http://ieeexplore.ieee.org/document/1196061/
[35] Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699.
doi: 10.1175/JCLI3990.1 url: http://journals.ametsoc.org/doi/10.1175/JCLI3990.1
[36] Mao K, Yuan Z, Zuo Z, et al. Changes in global cloud cover based on remote sensing data from 2003 to 2012[J], Chinese Geographical Science, 2019, 29(2):306-315.
doi: 10.1007/s11769-019-1030-6 url: https://doi.org/10.1007/s11769-019-1030-6
[37] Yan Y, Mao K, Shi J, et al. Driving forces of land surface temperature anomalous changes in North America in 2002—2018[J]. Scientific Reports, 2020, 6931(10):1-13.
[38] Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in Northern Alaska and other arctic regions[J]. Climatic Change, 2005, 72(3):251-298.
doi: 10.1007/s10584-005-5352-2 url: http://link.springer.com/10.1007/s10584-005-5352-2
[1] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[2] MA Junjun, WANG Chunlei, HUANG Xiaohong. The remote sensing inversion and validation of land surface temperature based on ASTER data: A case study of the Heihe River basin[J]. Remote Sensing for Natural Resources, 2023, 35(1): 198-204.
[3] ZHAO Lianjie, WU Mengquan, ZHENG Longxiao, LUAN Shaopeng, ZHAO Xianfeng, XUE Mingyue, LIU Jiayan, LIU Chenxi. Temporal-spatial changes and driving analysis of the northern shorelines of Jiaodong Peninsula[J]. Remote Sensing for Natural Resources, 2022, 34(4): 87-96.
[4] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[5] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[6] BO Yingjie, ZENG Yelong, LI Guoqing, CAO Xingwen, YAO Qingxiu. Impacts of floating solar parks on spatial pattern of land surface temperature[J]. Remote Sensing for Natural Resources, 2022, 34(1): 158-168.
[7] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[8] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[9] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[10] YUAN Qianying, MA Caihong, WEN Qi, LI Xuemei. Vegetation cover change and its response to water and heat conditions in the growing season in Liupanshan poverty-stricken area[J]. Remote Sensing for Land & Resources, 2021, 33(2): 220-227.
[11] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[12] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[13] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[14] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[15] FAN Jiazhi, LUO Yu, TAN Shiqi, MA Wen, ZHANG Honghao, LIU Fulai. Accuracy evaluation of the FY-3C/MWRI land surface temperature product in Hunan Province[J]. Remote Sensing for Land & Resources, 2021, 33(1): 249-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech