Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 170-178     DOI: 10.6046/zrzyyg.2022376
|
Hyperspectral inversion of total nitrogen content in soils based on fractional order differential
CHEN Haoyu(), XIANG Lei(), GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei
Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010010, China
Download: PDF(4478 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to determine the total nitrogen content (TNC) in soils in Tuoketuo County quickly and nondestructively, thus meeting the requirements of precision agriculture. With the soil TNC and hyperspectral data of 120 sampling sites in the study area as the data source, this study processed the hyperspectral data using the 1~2 orders fractional order differential (FOD) interval of 0.1 to screen the sensitive wavebands. Then, this study built 24 inversion models for soil TNC using the support vector machine (SVM) and the back propagation neural network (BPNN). The results are as follows: ① After FOD processing, the information at the wave crests and troughs of the spectra was amplified, and the reflectance of the remaining wavebands approached zero gradually with an increase in the decomposition scale. ② The Pearson correlation coefficient between original spectra and soil TNC was r = 0.61. This correlation coefficient was up to a maximum of 0.67 at 1.1- order after FOD processing, increasing by 0.06. ③ The BPNN prediction models outperformed the SVM prediction models. The optimal soil TNC prediction model was the BPNN model built after 1.1-order differential processing. This model yielded an R2 of 0.75 and a root mean square error (RMSE) of 0.16 for the modeling set and an R2 of 0.71 and an RMSE of 0.16 for the verification set, with a relative percent deviation (RPD) of 2.06. This model produced effective inversion results of the soil TNC in the study area, with a much higher accuracy than the BPNN model built using original spectra. Therefore, the BPNN model built using hyperspectral data through 1.1-order differential processing allows for the inversion-based prediction of soil TNC in the study area, providing a theoretical reference and technical support for local precision agriculture.

Keywords fractional order differential      BPNN      SVM      precision agriculture     
ZTFLH:  TP79  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Haoyu CHEN
Lei XIANG
He GAO
Jinyi MU
Xiaojing SUO
Bowei HUA
Cite this article:   
Haoyu CHEN,Lei XIANG,He GAO, et al. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022376     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/170
Fig.1  Overview of study area of Togtoh County
Fig.2  Schematic diagram of soil collection and distribution
类型 最大值/
(g·
kg-1)
最小值/
(g·
kg-1)
均值/
(g·
kg-1)
中位数/
(g·
kg-1)
标准
偏度 峰度 变异
系数/
%
全氮 1.74 0.11 0.53 0.41 0.33 1.27 1.16 0.62
Tab.1  Descriptive statistics of soil nutrients
Fig.3  Schematic diagram of spectrum indoor measurement
Fig.4  Spectral reflectance curve
Fig.5  Spectral reflectance of different total nitrogen content
Fig.6  Spectrum comparison chart
Fig.7  Correlation distribution
阶数 波长范围/nm 波段数
0 815~819,830~835 11
1 828~829,534~535,548~554 11
1.1 535~539,541~542,817~818,834~835,839 12
1.2 535~536,816~819,830~835,837,839~840 15
1.3 785,810,815~819,822,830~835,837,839~840 17
1.4 535~536,816~819,830~835 12
1.5 624,639,640,746~747,769,816~818 9
1.6 621,624~625,638~640,680,727,746~747,816~818 13
1.7 604,621,624~625,638~639,666,727,816~817 10
1.8 604,621,624,638~639 5
1.9 604,1 411~1 412,1 415 4
2 1 404,1 407~1 408 3
Tab.2  Sensitive band screening
数据集 最大值/
(g·kg-1)
最小值/
(g·kg-1)
均值/
(g·kg-1)
标准差/
(g·kg-1)
土样
数/个
建模集 1.74 0.12 0.52 0.29 90
验证集 1.44 0.11 0.52 0.36 30
Tab.3  Descriptive statistics of modeling set and prediction set of total nitrogen
阶数 建模集 验证集 RPD
R2 RMSE R2 RMSE
0 0.28 0.22 0.27 0.28 1.18
1 0.44 0.19 0.33 0.26 1.27
1.1 0.55 0.16 0.42 0.22 1.50
1.2 0.54 0.17 0.41 0.23 1.43
1.3 0.45 0.19 0.35 0.26 1.27
1.4 0.52 0.17 0.38 0.24 1.38
1.5 0.43 0.19 0.38 0.25 1.32
1.6 0.50 0.17 0.34 0.26 1.27
1.7 0.47 0.18 0.32 0.26 1.27
1.8 0.39 0.28 0.23 0.28 1.18
1.9 0.28 0.22 0.13 0.31 1.06
2 0.28 0.21 0.15 0.30 1.10
Tab.4  SVM prediction model
阶数 建模集 验证集 RPD
R2 RMSE R2 RMSE
0 0.58 0.25 0.58 0.31 1.06
1 0.66 0.23 0.64 0.22 1.50
1.1 0.75 0.16 0.71 0.16 2.06
1.2 0.74 0.19 0.65 0.23 1.43
1.3 0.73 0.19 0.56 0.21 1.57
1.4 0.75 0.45 0.51 0.31 1.06
1.5 0.69 0.22 0.58 0.3 1.10
1.6 0.75 0.20 0.53 0.31 1.06
1.7 0.69 0.47 0.63 0.28 1.18
1.8 0.60 0.25 0.63 0.29 1.14
1.9 0.54 0.26 0.37 0.33 1.00
2 0.53 0.26 0.46 0.32 1.03
Tab.5  BP neural network prediction model
[1] 王炜超, 杨玮, 崔玉露, 等. 基于CatBoost算法与图谱特征融合的土壤全氮含量预测[J]. 农业机械学报, 2021, 52(s1):316-322.
[1] Wang W C, Yang W, Cui Y L, et al. Prediction of soil total nitrogen based on CatBoost algorithm and fusion of image spectral features[J]. Transactions of the Chinese Society of Agricultural Machinery, 52(s1):316-322.
[2] 殷彩云, 白子金, 罗德芳, 等. 基于高光谱数据的土壤全氮含量估测模型对比研究[J]. 中国土壤与肥料, 2022(1):9-15.
[2] Yin C Y, Bai Z J, Luo D F, et al. Comparative study on estimation models of soil total nitrogen content based on hyperspectral data[J]. Soil and Fertilizer Sciences in China, 2022(1):9-15.
[3] 钟浩, 李西灿, 翟浩然, 等. 基于表层土壤光谱的耕层土壤有机质间接估测[J]. 安徽农业大学学报, 2020, 47(3):421-426.
[3] Zhong H, Li X C, Zhai H R, et al. Indirect estimation of organic matter content in plough layer based on topsoil spectrum[J]. Journal of Anhui Agricultural University, 2020, 47(3):421-426.
[4] 王延仓, 杨秀峰, 赵起超, 等. 二进制小波技术定量反演北方潮土土壤有机质含量[J]. 光谱学与光谱分析, 2019, 39(9):2855-2861.
[4] Wang Y C, Yang X F, Zhao Q C, et al. Quantitative inversion of soil organic matter content in northern tidal soil by binary wavelet technique[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2855-2861.
doi: 10.3964/j.issn.1000-0593(2019)09-2855-07
[5] Dalai R C, Henry R J. Simultaneous determination of moisture,organic carbon,and totalnitrogen by in France spectrometry[J]. Soil Science Society of America Journal, 1986, 50:120-123.
doi: 10.2136/sssaj1986.03615995005000010023x url: https://acsess.onlinelibrary.wiley.com/doi/10.2136/sssaj1986.03615995005000010023x
[6] Hummel J W, Sudduth K A, Hollinger S E. Soil moisture and organic matter prediction of surface and subsurface soils using an NIR soil sensor[J]. Computers and Electronics in Agriculture, 2001, 32(2):149-165.
doi: 10.1016/S0168-1699(01)00163-6 url: https://linkinghub.elsevier.com/retrieve/pii/S0168169901001636
[7] Reeves J B, Mccarty G W, Meisinger J J. Near infrared reflectance spectroscopy for the analysis of agricultural soil[J]. Journal of Near Infrared Spectroscopy, 1997, 7(3):179-193.
doi: 10.1255/jnirs.248 url: http://journals.sagepub.com/doi/10.1255/jnirs.248
[8] 卢艳丽, 白由路, 王磊, 等. 黑土土壤中全氮含量的高光谱预测分析[J]. 农业工程学报, 2010, 26(1):256-261.
[8] Lu Y L, Bai Y L, Wang L, et al. Hyperspectral prediction analysis of total nitrogen content in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1):256-261.
[9] 张娟娟, 田永超, 姚霞, 等. 基于高光谱的土壤全氮含量估测[J]. 自然资源学报, 2011, 26(5):881-890.
[9] Zhang J J, Tian Y C, Yao X, et al. Estimating soil total nitrogen content based on hyperspectral analysis technology[J]. Journal of Natural Resources, 2011, 26(5):881-890.
doi: 10.11849/zrzyxb.2011.05.015
[10] 赵燕东, 皮婷婷. 北京地区粘壤土全氮含量的光谱预测模型[J]. 农业机械学报, 2016, 47(3):144-149.
[10] Zhao Y D, Pi T T. Spectral prediction model of total nitrogen content of clay loam in Beijing[J]. Trasactions of the Chinese Society of Agricaltrual Machinery, 2016, 47(3):144-149.
[11] 王世东, 石朴杰, 张合兵, 等. 基于高光谱的矿区复垦农田土壤全氮含量反演[J]. 生态学杂志, 2019, 38(1):294-301.
[11] Wang S D, Shi P J, Zhang H B, et al. Inversion of soil total nitrogen content in reclaimed farmland of mining area based on hyperspectral imaging[J]. Chinese Journal of Ecology, 2019, 38(1):294-301.
[12] 赵启东, 葛翔宇, 丁建丽, 等. 结合分数阶微分技术与机器学习算法的土壤有机碳含量光谱估测[J]. 激光与光电子学进展, 2020, 57(15):253-261.
[12] Zhao Q D, Ge X Y, Ding J L, et al. Combination fractional order differential and machine learning algorithm for spectral estimation of soil organic carbon content[J]. Laser and Optoelectronics Progress, 2020, 57(15):253-261.
[13] 李武耀, 买买提·沙吾提, 买合木提·巴拉提. 基于分数阶微分的土壤有机质含量高光谱反演研究[J]. 激光与光电子学进展, 2023, 60(7):404-411.
[13] Li W Y, Mamat S, Maihemuti B. Hyperspectral inversion of soil organic matter content based on fractional differential[J]. Laser and Optoelectronics Progress, 2023, 60(7):404-411.
[14] 竞霞, 张腾, 邹琴, 等. 基于分数阶微分光谱指数的小麦条锈病遥感监测模型构建[J]. 农业工程学报, 2021, 37(17):142-151.
[14] Jing X, Zhang T, Zou Q, et al. Construction of remote sensing monitoring model of wheat stripe rust based on fractional differential spectral index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17):142-151.
[15] 赵慧, 李新国, 靳万贵, 等. 基于分数阶微分的博斯腾湖湖滨绿洲土壤电导率高光谱估算[J]. 甘肃农业大学学报, 2021, 56(1):118-125.
[15] Zhao H, Li X G, Jin W G, et al. Hyperspectral estimation of soil conductivity in oasis along Bosten Lake based on fractional differential[J]. Journal of Gansu Agricultural University, 2021, 56(1):118-125.
[16] 田安红, 赵俊三, 张顺吉, 等. 基于分数阶微分的盐渍土电导率高光谱估算研究[J]. 中国生态农业学报(中英文), 2020, 28(4):599-607.
[16] Tian A H, Zhao J S, Zhang S J, et al. Hyperspectral estimation of electrical conductivity of saline soil based on fractional differentiation[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4):599-607.
[17] Wang X P, Zhang F, Kung H T, et al. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China[J]. Remote Sensing of Environment, 2018, 218:104-118.
doi: 10.1016/j.rse.2018.09.020 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425718304310
[18] 卢志宏, 刘辛瑶, 常书娟, 等. 基于BP神经网络的草原矿区表层土壤N/P高光谱反演模型[J]. 草业科学, 2018, 35(9):2127-2136.
[18] Lu Z H, Liu X Y, Chang S J, et al. Hyperspectral inversion of the surface soil N/P rationin a grassland mining area based on the BP network[J]. Pratacultural Science, 2018, 35(9):2127-2136.
[19] 谭念, 孙一丹, 王学顺, 等. 基于主成分分析和支持向量机的木材近红外光谱树种识别研究[J]. 光谱学与光谱分析, 2017, 37(11): 3370-3374.
[19] Tan N, Sun Y D, Wang X S, et al. Research on near infrared spectrum with principal component analysis and support vector machine for timber identification[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3370-3374.
[20] 朱文静, 毛罕平, 周莹, 等. 基于高光谱图像技术的番茄叶片氮素营养诊断[J]. 江苏大学学报(自然科学版), 2014, 35(3): 290-294.
[20] Zhu W J, Mao H P, Zhou Y, et al. Nitrogen nutrition diagnosis of tomato leaves based on hyperspectral image technology[J]. Journal of Jiangsu University (Natural Science Edition), 2014, 35(3): 290-294.
[21] 董毅, 程伟, 张燕平, 等. 基于SVM的先分类再回归方法及其在产量预测中的应用[J]. 计算机应用, 2010, 30(9):2310-2313.
[21] Dong Y, Cheng W, Zhang Y P, et al. The method of classification and regression based on SVM and its application in yield prediction[J]. Journal of Computer Applications, 2010, 30(9):2310-2313.
doi: 10.3724/SP.J.1087.2010.02310 url: http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1087.2010.02310
[22] 郭云开, 刘宁, 刘磊, 等. 土壤Cu含量高光谱反演的BP神经网络模型[J]. 测绘科学, 2018, 43(1):135-139,152.
[22] Guo Y K, Liu N, Liu L, et al. Hyper-spectral inversion of soil Cu content based on BP neural network model[J]. Science of Surveying and Mapping, 2018, 43(1):135-139,152.
[23] Pan H, Wang X Y, Chen Q, et al. Application of BP neural network based on genetic algorithm[J]. Computer Applications, 2005, 25(12):2777-2779.
[24] 刘润, 张绍良, 侯湖平, 等. 基于思维进化优化BP神经网络的大豆叶片叶绿素含量高光谱反演[J]. 江苏农业科学, 2018, 46(13):212-216.
[24] Liu R, Zhang S L, Hou H P, et al. Hyperspectral retrieval of chlorophyll content in soybean leaves based on mind evolutionary optimization BP neural network[J]. Jiangsu Agricultural Sciences, 2018, 46(13):212-216.
[25] 陈昊宇, 杨光, 韩雪莹, 等. 基于连续小波变换的土壤有机质含量高光谱反演[J]. 中国农业科技导报, 2021, 23(5):132-142.
[25] Chen H Y, Yang G, Han X Y, et al. Hyperspectral inversion of soil organic matter content based on continuous wavelet transform[J]. China Agricultural Science and Technology Guide, 2021, 23(5):132-142.
[26] 刘杨, 冯海宽, 孙乾, 等. 基于无人机高光谱分数阶微分的马铃薯地上生物量估算[J]. 农业机械学报, 2020, 51(12):202-211.
[26] Liu Y, Feng H K, Sun Q, et al. Estimation of potato above-groud biomass based on fractional differential of UAV hyperspectral[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(12):202-211.
[27] 徐彬彬. 土壤剖面的反射光谱研究[J]. 土壤, 2000(6): 281-287.
[27] Xu B B. Study on the reflection spectrum of soil profile[J]. Soil, 2000(6):281-287.
[28] 刘凡, 马玲, 杨光, 等. 灰漠土土壤全氮含量的高光谱特征分析及估测[J]. 新疆农业科学, 2017, 54(1):140-147.
[28] Liu F, Ma L, Yang G, et al. Hyperspectral characteristic analysis and estimation of total nitrogen content in grey desert soil[J]. Xinjiang Agricultural Sciences, 2017, 54(1):140-147.
[29] 邵丽冰, 陈奕云, 徐璐, 等. 基于分数阶微分的土壤含水量高光谱响应特征与估测模型构建[J]. 测绘地理信息, 2022, 47(s1):131-136.
[29] Shao L B, Chen Y Y, Xu L, et al. Analysis on soil moisture content hyperspectral response and construction of estimation model based on fractional-order derivative[J]. Surveying and Mapping Geographic Information, 2022, 47(s1):131-136.
[30] 李长春, 施锦锦, 马春艳, 等. 基于小波变换和分数阶微分的冬小麦叶绿素含量估算[J]. 农业机械学报, 2021, 52(8):172-182.
[30] Li C C, Shi J J, Ma C Y, et al. Estimation of chlorophyll content in winter wheat based on wavelet transform and fractional differential[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(8):172-182.
[1] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
[2] ZHAO Lianjie, WU Mengquan, ZHENG Longxiao, LUAN Shaopeng, ZHAO Xianfeng, XUE Mingyue, LIU Jiayan, LIU Chenxi. Temporal-spatial changes and driving analysis of the northern shorelines of Jiaodong Peninsula[J]. Remote Sensing for Natural Resources, 2022, 34(4): 87-96.
[3] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[4] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[5] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[6] Yang ZHOU, Yunsheng ZHANG, Siyang CHEN, Zhengrong ZOU, Yaochen ZHU, Ruixue ZHAO. Disaster damage detection in building areas based on DCNN features[J]. Remote Sensing for Land & Resources, 2019, 31(2): 44-50.
[7] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[8] Juan FENG, Jianli DING, Wenyu WEI. Soil salinization monitoring based on Radar data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 195-203.
[9] Xianyu GUO, Kun LI, Zhiyong WANG, Hongyu LI, Zhi YANG. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land & Resources, 2018, 30(4): 20-27.
[10] Yiqun HU, Shaoguang ZHOU, Shun YUE, Xiaoqing LIU. Remote sensing image retrieval based on sparse local invariant features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 38-44.
[11] ZHOU Xiaoyu, CHEN Fulong, JIANG Aihui. SVM-based forest mapping of Wolong Giant Panda Habitat using SAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 85-91.
[12] FU Ying, GUO Qiaozhen, PAN Yingyang, WANG Dongchuan. Research on building extraction rules based on SPOT6 data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 65-69.
[13] FAN Xue, LIU Qingwang, TAN Bingxiang. Classification of forest species using airborne PHI hyperspectral data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 110-116.
[14] WANG Xudong, DUAN Fuzhou, QU Xinyuan, LI Dan, YU Panfeng. Building extraction based on UAV imagery data with the synergistic use of objected-based method and SVM classifier[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 97-103.
[15] DIAO Shujuan, LIU Chunling, ZHANG Tao, HE Peng, GUO Zhaocheng, TU Jienan. Extraction of remote sensing information for lake salinity level based on SVM: A case from Badain Jaran desert in Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech