Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 18-26     DOI: 10.6046/zrzyyg.2022021
|
Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine
ZHENG Xiucheng1,2,3(), ZHOU Bin1,2,3(), LEI Hui1,2,3, HUANG Qiyu3, YE Haolin3
1. Institute of Remote Sensing and Earth Science, Hangzhou Normal University, Hangzhou 311121, China
2. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
3. School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
Download: PDF(4481 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, the common methods for extracting tidal flats using remote sensing images tend to estimate tidal flat boundaries. Therefore, it is difficult to ensure high extraction accuracy. This study combined remote sensing cloud computing platform Google Earth Engine with the geographic information system (GIS) technology and selected 77 Landsat images during 1990—2021. Meanwhile, the mean high-tide line was set to the artificial coastline obtained through visual interpretation, and the mean low-tide line was determined through the fitting of the shoreline. Based on these, this study extracted the tidal flat in the Cixi section on the south bank of the Hangzhou Bay and estimated its area. Furthermore, this study analyzed the spatio-temporal changes in the area of the tidal flat. The results are as follows. During 1990—2021, the area of the tidal flat in the Cixi section on the south bank of the Hangzhou Bay was roughly maintained in the range of 20 000~24 000 hm2, and the tidal flat migrated from south to north at a speed of 286.9 m·a-1. The main driving force behind the spatial and area changes of the tidal flat was local policies.

Keywords tidal flat      Google Earth Engine      DSAS      shoreline      Hangzhou Bay     
ZTFLH:  TP79  
Corresponding Authors: ZHOU Bin     E-mail: 2017210214034@stu.hznu.edu.cn;zhoubin@hznu.edu.cn
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiucheng ZHENG
Bin ZHOU
Hui LEI
Qiyu HUANG
Haolin YE
Cite this article:   
Xiucheng ZHENG,Bin ZHOU,Hui LEI, et al. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022021     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/18
Fig.1  Geographical location of the study area
Fig.2  Annually and monthly distribution of images
Fig.3  Technology roadmap for tidal flat extraction
Fig.4  Average low tide line extracted by DSAS module
Fig.5  Construction of buffers and sample points
Fig.6  Extraction results of tidal flat
Fig.7  Statistics of tidal flat area
识别类型 实测类型 用户精度/%
潮滩 其他 行总数
潮滩 43 4 47 91.49
其他 2 191 193 98.96
列总数 45 195 240
生产者精度/% 95.56 97.95
Tab.1  Confusion matrix for evaluation of tidal flat extraction accuracy in 2021
年份 1995年 2000年 2005年 2010年 2015年 2021年
总体精
度/%
95.14 93.87 92.48 93.37 96.50 95.99
Kappa
系数
0.902 7 0.871 2 0.846 3 0.865 6 0.929 8 0.919 3
Tab.2  Summary of evaluation results of tidal flat extraction accuracy
Fig.8  Spatio-temporal variation of geographical center of tidal flat
迁移时段 迁移距离
西/东迁移 南/北迁移 总迁移
1995—2000年 -701 1 700 1 389
2000—2005年 1 614 2 160 2 696
2005—2010年 -8 893 3 510 9 561
2010—2015年 4 926 -1 150 5 058
2015—2021年 -171 1 240 1 252
1995—2021年 -3 225 7 460 8 127
Tab.3  Migration of geographical center of tidal flat (m)
时段 迁移速率
高潮线(海岸线) 低潮线
1995—2000年 215.18 395.22
2000—2005年 233.87 -91.42
2005—2010年 161.71 461.52
2010—2015年 197.35 132.89
2015—2021年 23.65 60.10
Tab.4  High (low) tidal line migration rate(m·a-1)
[1] 王颖, 朱大奎. 中国的潮滩[J]. 第四纪研究, 1990(4):291-300.
[1] Wang Y, Zhu D K. Tidal flats of China[J]. Quaternary Sciences, 1990(4):291-300.
[2] 时钟, 陈吉余, 虞志英. 中国淤泥质潮滩沉积研究的进展[J]. 地球科学进展, 1996(6):37-44.
[2] Shi Z, Chen J Y, Yu Z Y. Sedimentation on the intertidal mudflat in China:An overview[J]. Advances in Earth Science, 1996(6):37-44.
[3] 张春桂. MODIS遥感数据在福建省海岸带滩涂资源监测中的应用研究[J]. 海洋学报, 2007(4):51-58.
[3] Zhang C G. The application of MODIS data in tidal flat resource monitoring of coastal zone of Fujian Province in China[J]. Acta Oceonlolgica Sinica, 2007(4):51-58.
[4] 王小龙, 张杰, 初佳兰. 基于光学遥感的海岛潮间带和湿地信息提取——以东沙岛(礁)为例[J]. 海洋科学进展, 2005(4):477-481.
[4] Wang X L, Zhang J, Chu J L. Extraction of remotely sensed information of island intertidal zone and wetland:Taking the Dongsha Island as an example[J]. Advances in Marine Science, 2005(4)477-481.
[5] 王小丹, 方成, 康慧, 等. 曹妃甸地区潮间带演变的遥感监测[J]. 海洋通报, 2014, 33(5):559-565.
[5] Wang X D, Fang C, Kang H, et al. Remote sensing monitoring of the Caofeidian tidal zone evolution[J]. Marine Science Bulletin, 2014, 33(5):559-565.
[6] 王靖雯, 牛振国. 基于潮位校正的盐城滨海潮间带遥感监测及变化分析[J]. 海洋学报, 2017, 39(5):149-160.
[6] Wang J W, Niu Z G. Remote-sensing analysis of Yancheng intertidal zones based on tidal correction[J]. Haiyang Xuebao, 2017, 39(5):149-160.
[7] 韩倩倩, 牛振国, 吴孟泉, 等. 基于潮位校正的中国潮间带遥感监测及变化[J]. 科学通报, 2019, 64(4):456-473.
[7] Han Q Q, Niu Z G, Wu M Q, et al. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction[J]. Chinese Science Bulletin, 2019, 64(4):456-473.
[8] 张媛媛, 高志强, 刘向阳, 等. 基于遥感水边线的潮滩面积提取方法研究[J]. 海洋开发与管理, 2018, 35(3):56-61.
[8] Zhang Y Y, Gao Z Q, Liu X Y, et al. The extraction method of tidal flat area based on remote sensing waterlines[J]. Ocean Development and Management, 2018, 35(3):56-61.
[9] 胡允和, 施德忠. 慈溪海涂促淤浅析[J]. 浙江水利科技, 1984(2):22-32.
[9] Hu Y H, Shi D Z. Brief analysis of Cixi sea flat to promote sedimentation[J]. Zhejiang Hydrotechnics, 1984(2):22-32.
[10] 王丽佳, 李加林, 田鹏, 等. 杭州湾南岸围垦土地人类活动强度及对滨海湿地覆被类型的影响[J]. 上海国土资源, 2020, 41(1):4-10.
[10] Wang L J, Li J L, Tian P, et al. Impacts of human activity on coastal wetland land cover changes related to reclamation on the south coast of Hangzhou Bay[J]. Shanghai Land and Resources, 2020, 41(1):4-10.
[11] 韩茜. 基于遥感技术的我国潮滩资源现状研究[D]. 南京: 南京师范大学, 2011.
[11] Han Q. Research on the status of tidal resources in China using remote sensing technology[D]. Nanjing:Nanjing Normal University, 2011.
[12] 张振德, 肖继春. 遥感在滩涂演变调查中的应用方法研究[J]. 自然资源遥感, 1995, 7(3):25-28.doi: 10.6046/gtzyyg.1995.03.05.
doi: 10.6046/gtzyyg.1995.03.05
[12] Zhang Z D, Xiao J C. The application of remote sensing to investigate tidal flat evolution[J]. Remote Sensing for Land and Resources, 1995, 7(3):25-28.doi: 10.6046/gtzyyg.1995.03.05.
doi: 10.6046/gtzyyg.1995.03.05
[13] 赵明才, 章大初. 海岸线定义问题的讨论[J]. 海岸工程, 1990(z1):91-99.
[13] Zhao M C, Zhang D C. Discussions on the definition of shoreline[J]. Coastal Engineering, 1990(z1):91-99.
[14] 盛静芬, 朱大奎. 海岸侵蚀和海岸线管理的初步研究[J]. 海洋通报, 2002(4):50-57.
[14] Sheng J F, Zhu D K. Discussion about coastline erosion and management[J]. Marine Science Bulletin, 2002(4):50-57.
[15] 吴一全, 刘忠林. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4):582-602.
[15] Wu Y Q, Liu Z L. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4):582-602.
[16] 杨修国. 图像阈值分割方法研究与分析[D]. 上海: 华东师范大学, 2009.
[16] Yang X G. Threshold image segmentation research and analysis[D]. Shanghai:East China Normal University, 2009.
[17] Feyisa G L, Henrik M, Rasmus F, et al. Automated water extraction index:A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing of Environment, 2014, 140:23-35
doi: 10.1016/j.rse.2013.08.029 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425713002873
[18] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033
doi: 10.1080/01431160600589179 url: https://www.tandfonline.com/doi/full/10.1080/01431160600589179
[19] 饶萍, 王建力. 最优分区与最优指数联合的水体信息提取[J]. 地球信息科学学报, 2017, 19(5):702-712.
doi: 10.3724/SP.J.1047.2017.00702
[19] Rao P, Wang J L. Water extraction based on the optimal subregion and the optimal indexes combined[J]. Journal of Geo-Information Science, 2017, 19(5):702-712.
[20] 陈星壮. 基于高分辨率遥感影像的城市水体提取算法研究[D]. 成都: 电子科技大学, 2021.
[20] Chen X Z. Urban open water extraction from high resolution remote sensing images[D]. Chengdu:University of Electronic Science and Technology of China, 2021.
[21] Otsu N. Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66.
doi: 10.1109/TSMC.1979.4310076 url: http://ieeexplore.ieee.org/document/4310076/
[22] Thieler E, Himmelstoss E, Zichichi J, et al. The Digital Shoreline Analysis System (DSAS) Version 4.0:An ArcGIS extension for calculating shoreline change[R]. Reston:U.S. Geological Survey, 2009.
[23] 张华国, 郭艳霞, 黄韦艮, 等. 1986年以来杭州湾围垦淤涨状况卫星遥感调查[J]. 自然资源遥感, 2005, 17(2):50-54,81.doi: 10.6046/gtzyyg.2005.02.12.
doi: 10.6046/gtzyyg.2005.02.12
[23] Zhang H G, Guo Y X, Huang W G, et al. A remote sensing investigating of inning and silting in Hangzhou Bay since 1986[J]. Remote Sensing for Land and Resources, 2005, 17(2):50-54,81.doi: 10.6046/gtzyyg.2005.02.12.
doi: 10.6046/gtzyyg.2005.02.12
[24] Foody G M. Status of land cover classification accuracy assessment[J]. Remote Sensing of Environment, 2002, 80(1):185-201.
doi: 10.1016/S0034-4257(01)00295-4 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425701002954
[25] Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data[J]. Remote Sensing of Environment, 1991, 37(1):35-46.
doi: 10.1016/0034-4257(91)90048-B url: https://linkinghub.elsevier.com/retrieve/pii/003442579190048B
[26] 朱世强. 高水平建设慈溪杭州湾新区[J]. 今日浙江, 2003(19):33-34.
[26] Zhu S Q. High-level construction of Hangzhou Bay New District in Cixi[J]. Zhejiang Today, 2003(19):33-34.
[27] 孙超, 刘永学, 李满春, 等. 近25 a来江苏中部沿海盐沼分布时空演变及围垦影响分析[J]. 自然资源学报, 2015, 30(9):1486-1498.
[27] Sun C, Liu Y X, Li M C, et al. Spatiotemporal evolution of salt marsh and influential analysis of reclamation of Jiangsu middle coast in recent 25 years[J]. Journal of Natural Resources, 2015, 30(9):1486-1498.
[28] 国务院. 国务院关于加强滨海湿地保护严格管控围填海的通知[EB/OL]. http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm.
url: http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm.
[28] The central people’s government of the PRC. Notice of the state council on strengthening the protection of coastal wetlands and strictly controlling reclamation[EB/OL].http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm.
url: http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm.
[29] 潘存鸿, 郑君, 曾剑, 等. 杭州湾年最大潮差分析[J]. 水动力学研究与进展(A辑), 2021, 36(2):201-209.
[29] Pan C H, Zheng J, Zeng J, et al. Analysis of annual maximum tidal range in Hangzhou Bay[J]. Chinese Journal of Hydrodynamics, 2021, 36(2):201-209.
[30] 潘存鸿, 郑君, 陈刚, 等. 杭州湾潮汐特征时空变化及原因分析[J]. 海洋工程, 2019, 37(3):1-11.
[30] Pan C H, Zheng J, Chen G, et al. Spatial and temporal variations of tide characteristics in Hangzhou Bay and cause analysis[J]. The Ocean Engineering, 2019, 37(3):1-11.
doi: 10.1016/j.oceaneng.2009.12.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0029801809002741
[1] YAN Bokun, GAN Fuping, YIN Ping, GE Xiaoli, GUO Yi, BAI Juan. Remote sensing observations of tidal flats, shorelines, and aquacultural water bodies along coastal zones in China mainland during 1989—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 53-63.
[2] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[3] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[4] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[5] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[6] ZHAO Lianjie, WU Mengquan, ZHENG Longxiao, LUAN Shaopeng, ZHAO Xianfeng, XUE Mingyue, LIU Jiayan, LIU Chenxi. Temporal-spatial changes and driving analysis of the northern shorelines of Jiaodong Peninsula[J]. Remote Sensing for Natural Resources, 2022, 34(4): 87-96.
[7] ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
[8] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[9] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[12] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[13] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[14] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[15] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech