Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 153-159     DOI: 10.6046/zrzyyg.2022171
Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR
GAO Chen1,2(), MA Dong1,2, QU Man1,2, QIAN Jianguo3(), YIN Haiquan4, HOU Xiaozhen1,2
1. Hebei Hongshan National Observatory on Thick Sediments and Seismic Hazards, Xingtai 054000, China
2. Hebei Earthquake Agency, Shijiazhuang 050021, China
3. School of Geomatics, Liaoning Technical University, Fuxin 123000, China
4. The First Monitoring and Application Center, CEA, Tianjin 300180, China
Download: PDF(4081 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

As a principal instrument for observing and researching earthquake precursors, a borehole strain meter allows for point-based observation, high-accuracy observation, and the direct observation of shallow crustal stress-strain information. However, it fails to obtain information on spatial continuous deformation and is susceptible to interference by site environments such as pumping. The persistent scatterer interferometric synthetic aperture Radar (PS-InSAR) method can derive spatial continuous deformation fields and time-series deformation, with the cumulative deformation consistent with groundwater level changes. Using the PS-InSAR method, this study analyzed the land subsidence near the Huailai seismic station based on Sentinel-1 images, aiming to counteract surface deformation in the monitoring of borehole strain and to accurately analyze the anomalous information in the observational data. This study also investigated the mechanism of extension anomalies in the 2020—2021 observational data of the borehole strain. The results are as follows: The deformation center in the area near the Huailai seismic station was situated at the pumping well east of Yihebu Village. The time of the regional subsidence and that of the observed borehole strain anomalies were consistent with the pumping time of the pumping wells for heating in Yihebu Village. The extension anomalies in the borehole strain observational data of the Huailai seismic station shared consistent mechanisms with the surface changes caused by the pumping of the nearby pumping wells for heating. Therefore, the extension anomalies of borehole strain at the Huailai seismic station resulted from pumping the pumping wells for heating in Yihebu Village. This study shows that, in areas significantly affected by groundwater pumping, PS-InSAR plays a role of application demonstration in research on the anomaly mechanism through observation using observation instruments for earthquake precursors.

Keywords PS-InSAR      borehole strain      anomaly      land subsidence      pumping     
ZTFLH:  TP79  
Issue Date: 19 September 2023
E-mail this article
E-mail Alert
Articles by authors
Chen GAO
Dong MA
Man QU
Jianguo QIAN
Haiquan YIN
Xiaozhen HOU
Cite this article:   
Chen GAO,Dong MA,Man QU, et al. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
URL:     OR
Fig.1  Structural background and distribution of heat pumping wells near Huailai seismic station
Fig.2  Observation curve of daily average value of borehole strain in Huailai seismic station
Fig.3  Sentinel-1A image coverage
Fig.4  Spatio-temporal baseline distribution of interfergrams
Fig.5  Annual average deformation rate field in LOS direction
Fig.6  Deformation time series curves of the PS points(LOS)
体应变观测值 与TZ1累计形变
2020年11月—2021年3月 0.510 0.669
2021年11—12月 0.593 0.673
Tab.1  Correlation coefficients between borehole body observation data and cumulative deformation value
[1] 苏维刚, 马茹莹, 马震, 等. 钻孔应变的干扰源及其干扰机制的多方法分析[J]. 大地测量与地球动力学, 2021, 41(8):871-876.
[1] Su W G, Ma R Y, Ma Z, et al. The multi-method analusis of interference source and interference mechanism of borehole strain[J]. Journal of Geodesy and Geodynamics, 2021, 41(8):871-876.
[2] 茅远哲, 曹筠, 高晨, 等. 京西北地区地应变观测与小震震源机制解一致性研究[J]. 中国地震, 2019, 35(4):709-717.
[2] Mao Y Z, Cao J, Gao C, et al. Consistency of ground strain observation and source mechanism solution of small earthquakes in northwest Beijing[J]. Earthquake Research in China, 2019, 35(4):709-717.
[3] 李海亮, 李宏. 钻孔应变观测现状与展望[J]. 地质学报, 2010, 84(6):895-900.
[3] Li H L, Li H. Status and developments of borehole strain observation in China[J]. Acta Geologica Sinica, 2010, 84(6):895-900.
doi: 10.1111/acgs.2010.84.issue-4 url:
[4] 牛安福, 张凌空, 闫伟, 等. 中国钻孔应变观测能力及在地震预报中的应用[J]. 大地测量与地球动力学, 2011, 31(2):48-52.
[4] Niu A F, Zhang L K, Yan W, et al. Borehole strain measurement and application to earthquake prediction in China[J]. Journal of Geodesy Geodynamics, 2011, 31(2):48-52.
[5] 马栋, 陈建国, 郑爽, 等. 荷载对钻孔应变观测影响的实例分析[J]. 地震研究, 2014, 37(1):79-85.
[5] Ma D, Chen J G, Zheng S, et al. Example analysis of influence of load on the borehole strain observation[J]. Journal of Seismological Research, 2014, 37(1):79-85.
[6] 李杰, 刘敏, 邹钟毅. 数字化钻孔体应变干扰机理及异常分析[J]. 地震研究, 2003, 26(3):230-238.
[6] Li J, Liu M, Zou Z Y. Analysis of disturbance mechanism and abnormity of digital observation data of borehole body strain meters[J]. Journal of Seismological Research, 2003, 26(3):230-238.
[7] 朱建军, 李志伟, 胡俊. InSAR变形监测方法于研究进展[J]. 测绘学报, 2017, 46(1):1717-1733.
[7] Zhu J J, Li Z W, Hu J. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1717-1733.
doi: 10.11947/j.AGCS.2017.20170350
[8] 季灵运, 朱良玉, 刘传金. InSAR同震形变场及其在震源参数确定中的应用研究进展[J]. 地球科学与环境学报, 2021, 43(3):604-620.
[8] Ji L Y, Zhu L Y, Liu C J. Review on InSAR-derived coseismic deformation and the determination of earthquake source parameters[J]. Journal of Earth Sciences and Environment, 2021, 43(3):604-620.
[9] 雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS-InSAR技术的天津地面沉降研究[J]. 水文地质与工程地质, 2013, 40(6):106-111.
[9] Lei K C, Chen B B, Gong H L, et al. Progress of permanent scatter interferometry[J]. Hydrogeology and Engineering Geology, 2013, 40(6):106-111.
[10] 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668.
[10] Li D R, Liao M S, Wang Y. Progress of permanent scatter interfero-metry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668.
[11] 谢富仁, 张红艳, 崔效峰, 等. 延怀盆地活动断裂运动与现代构造应力场[J]. 地震地质, 2007, 29(4):693-703.
[11] Xie F R, Zhang H Y, Cui X F, et al. Active fault movement and recent tectonic stress field in Yanhuai basin[J]. Seismology and Geo-logy, 2007, 29(4):693-703.
[12] 陈阜超, 郭良迁, 郑智江. 基于GPS观测的张家口-渤海断裂带活动性[J]. 地震地质, 2020, 42(1):95-108.
[12] Chen F C, Guo L Q, Zheng Z J. Research on activity of Zhangjia-kou-Bohai fault zone based on GPS observations[J]. Seismology and Geology, 2020, 42(1):95-108.
[13] 董雅竹, 谭颖, 张朋辉, 等. 利用PS-InSAR研究合肥地区活动构造变形[J]. 地球物理学进展, 2021, 36(5):1822-1833.
[13] Dong Y Z, Tan Y, Zhang P H, et al. Using PS-InSAR to study active tectonic deformation in Hefei area[J]. Progress in Geophysics, 2021, 36(5):1822-1833.
[14] 许文斌, 李志伟, 丁晓利, 等. 利用InSAR短基线技术估计洛杉矶地区的地表时序形变和含水层参数[J]. 地球物理学报, 2012, 55(2):452-461.
[14] Xu W B, Li Z W, Ding X L, et al. Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area[J]. Chinese Journal of Geophysics, 2012, 55(2):452-461.
[15] 姚荣景, 王中元, 梁宁. 利用改进最小二乘法优化的Kriging综合模型[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(10):1159-1163.
[15] Yao R J, Wang Z Y, Liang N. Kriging comprehensive model optimized by improved least square method[J]. Journal of Liaoning Technical University(Natural Science), 2016, 35(10):1159-1163.
[16] 王迎霞, 赵超英, 刘媛媛, 等. 基于Sentinel-1数据监测临汾盆地地表形变[J]. 大地测量与地球动力学, 2018, 38(7):734-737.
[16] Wang Y X, Zhao C Y, Liu Y Y, et al. Surface deformation monitoring of Linfen basin with Sentinel-1 data[J]. Journal of Geodesy Geodynamics, 2018, 38(7):734-737.
[17] 王曰风, 张秀萍, 张珊珊, 等. 怀来地震台定点形变观测转折异常的调查与分析[J]. 山西地震, 2021(1):30-33.
[17] Wang Y F, Zhang X P, Zhang S S, et al. Innestigation and analysis of turning anomalies in fixed-point deformation at Huailai seismic station[J]. Earthquake Research in Shanxi, 2021(1):30-33.
[18] 罗三明, 单新建, 朱文武, 等. 多轨PSInSAR监测华北平原地表垂直形变场[J]. 地球物理学报, 2014, 57(10):3129-3139.
[18] Luo S M, Shan X J, Zhu W W, et al. Monitoring vertical ground deformation in the north China plain using the multitrack PSInSAR technique[J]. Progress in Geophysics, 2014, 57(10):3129-3139.
[1] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risk assessment of areas subject to land subsidence in the southern plain of Tianjin, China[J]. Remote Sensing for Natural Resources, 2023, 35(2): 182-192.
[2] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[3] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[4] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[5] XU Daxing, YANG Biao, SHAO Zhaogang, LIU Changfeng, WANG Da, WANG Jianping. A hyperspectral analysis of alteration zoning in the Hadamengou gold deposit and its significance for ore prospecting[J]. Remote Sensing for Natural Resources, 2023, 35(1): 123-131.
[6] YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
[7] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[8] ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai[J]. Remote Sensing for Natural Resources, 2022, 34(3): 106-111.
[9] ZHOU Chaofan, GONG Huili, CHEN Beibei, LEI Kunchao, SHI Liyuan, ZHAO Yu. Prediction of land subsidence along Tianjin-Baoding high-speed railway using WT-RF method[J]. Remote Sensing for Natural Resources, 2021, 33(4): 34-42.
[10] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[11] YU Bing, TAN Qingxue, LIU Guoxiang, LIU Fuzhen, ZHOU Zhiwei, HE Zhiyong. Land subsidence monitoring based on differential interferometry using time series of high-resolution TerraSAR-X images and monitoring precision verification[J]. Remote Sensing for Natural Resources, 2021, 33(4): 26-33.
[12] WEI Yingjuan, LIU Huan. Remote sensing-based mineralized alteration information extraction and prospecting prediction of the Beiya gold deposit, Yunnan Province[J]. Remote Sensing for Natural Resources, 2021, 33(3): 156-163.
[13] GU Yanchun, MENG Qingyan, HU Die, ZHOU Xiaocheng. Analysis of environmental effects of industrial thermal anomalies[J]. Remote Sensing for Land & Resources, 2020, 32(4): 190-198.
[14] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
[15] WANG Baocun, ZHU Lin, PAN Deng, GUO Lingfei, PENG Peng. Research on temporal and spatial evolution law of land subsidence in Zhengzhou[J]. Remote Sensing for Land & Resources, 2020, 32(3): 143-148.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech