Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 1-15     DOI: 10.6046/zrzyyg.2022145
Application status and prospect of remote sensing technology in precise planting management of apple orchards
ZHAO Hailan1,2(), MENG Jihua1(), JI Yunpeng3
1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Shaanxi Fruit Industry Group Company Limited, Xi’an 710016, China
Download: PDF(903 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

With the trend towards the precise and digital planting management of orchards, apple cultivation relies more heavily on the planting management supporting technologies of orchards. In recent years, continuous breakthroughs made in spatial resolution and revisiting frequency have made remote sensing technology a major supporting technology for the precise planting management of apple orchards. However, there is an absence of reviews of the application status and prospect of this technology in the planting management of orchards. Based on the analysis of primary applications of remote sensing technology in the precise planting management of apple orchards, this study classified the applications into three major categories, namely the surveys of basic orchard information, inversions of orchard parameters, and the planting management support of orchards. Furthermore, this study reviewed the methods and performance of the applications of remote sensing technology in various fields and explored the application potential. Finally, it identified three types of problems with current research and application of remote sensing technology, namely insufficient studies on mechanisms and in some application fields, low-degree integration of multiple technologies, and the lack of large-scale application models. In addition, this study proposed four hot research and application topics in the future, namely models used to simulate the growth mechanisms of apple trees, the integrated support system for the planting management of apple trees, the single-tree monitoring based on satellite data, and the diversified services of remote sensing-based monitoring products.

Keywords remote sensing      apple orchard      precision agriculture      fruit tree monitoring     
ZTFLH:  TP79  
Issue Date: 07 July 2023
E-mail this article
E-mail Alert
Articles by authors
Hailan ZHAO
Jihua MENG
Yunpeng JI
Cite this article:   
Hailan ZHAO,Jihua MENG,Yunpeng JI. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
URL:     OR
[1] Zhu Y, Yang G, Yang H, et al. Identification of apple orchard planting year based on spatiotemporally fused satellite images and clustering analysis of foliage phenophase[J]. Remote Sensing, 2020, 12(7):1199.
doi: 10.3390/rs12071199 url:
[2] Food and Agriculture Organization of the United Nations. FAOSTAT production database[DB/OL].[2021-7-16].
[3] Wang N, Joost W, Zhang F. Towards sustainable intensification of apple production in China-yield gaps and nutrient use efficiency in apple farming systems[J]. Journal of Integrative Agriculture, 2016, 15(4):716-725.
doi: 10.1016/S2095-3119(15)61099-1 url:
[4] Zhai H, Guo L, Yao Y, et al. Review of the Chinese apple industry[J]. Acta Horticulturae, 2008, 772:191-194.
[5] Zhu Y, Yang G, Yang H, et al. Estimation of apple flowering frost loss for fruit yield based on gridded meteorological and remote sensing data in Luochuan,Shaanxi Province,China[J]. Remote Sensing, 2021, 13(9):1630-1647.
doi: 10.3390/rs13091630 url:
[6] Nagy A, Tamas J. Noninvasive water stress assessment methods in orchards[J]. Communications in Soil Science and Plant Analysis, 2013, 44(1-4):366-376.
doi: 10.1080/00103624.2013.742308 url:
[7] 张义, 谢永生, 郝明德, 等. 黄土塬面果园土壤养分特征及演变[J]. 植物营养与肥料学报, 2010, 16(5):1170-1175.
[7] Zhang Y, Xie Y S, Hao M D, et al. Characteristics and evolution of soil nutrients in apple orchards at the gully region of Loess Plateau[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5):1170-1175.
[8] Skoneczny H, Kubiak K, Spiralski M, et al. Fire blight disease detection for apple trees:Hyperspectral analysis of healthy,infected and dry leaves[J]. Remote Sensing, 2020, 12(13):2101-2116.
doi: 10.3390/rs12132101 url:
[9] 中华人民共和国农业农村部. 数据查询[DB/OL].[2022-3-16].
[9] Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Data query[DB/OL].[2022-3-16].
[10] 张茂, 张霞, 胡光成, 等. 遥感干旱指数在洛川苹果干旱监测中的适用性分析[J]. 遥感技术与应用, 2021, 36(1):187-197.
[10] Zhang M, Zhang X, Hu G C, et al. Applicability analysis of remote sensing based drought indices in drought monitoring of apple in Luo-chuan[J]. Remote Sensing Technology and Application, 2021, 36(1):187-197.
[11] Li C, Zhu X, Wei Y, et al. Estimating apple tree canopy chlorophyll content based on Sentinel-2A remote sensing imaging[J]. Scientific Reports, 2018, 8:3756.
doi: 10.1038/s41598-018-21963-0 pmid: 29491437
[12] Chen B, Xiao X, Wu Z, et al. Identifying establishment year and pre-conversion land cover of rubber plantations on Hainan Island,China using Landsat data during 1987—2015[J]. Remote Sensing, 2018, 10(8):1240.
doi: 10.3390/rs10081240 url:
[13] 陈媛媛, 游炯, 幸泽峰, 等. 世界主要国家精准农业发展概况及对中国的发展建议[J]. 农业工程学报, 2021, 37(11):315-324.
[13] Chen Y Y, You J, Xing Z F, et al. Review of precision agriculture development situations in the main countries in the world and suggestions for China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11):315-324.
[14] Elijah O, Rahman T A, Orikumhi I, et al. An overview of internet of things (IoT) and data analytics in agriculture:Benefits and challenges[J]. IEEE Internet of Things Journal, 2018, 5(5):3758-3773.
doi: 10.1109/JIoT.6488907 url:
[15] Panda S S, Hoogenboom G, Paz J O. Remote sensing and geospatial technological applications for site-specific management of fruit and nut crops:A review[J]. Remote Sensing, 2010, 2(8):1973-1997.
doi: 10.3390/rs2081973 url:
[16] Odi-Lara M, Campos I, Neale C M U, et al. Estimating evapotranspiration of an apple orchard using a remote sensing-based soil water balance[J]. Remote Sensing, 2016, 8(3):253-272.
doi: 10.3390/rs8030253 url:
[17] 程志强, 蒙继华. 作物单产估算模型研究进展与展望[J]. 中国生态农业学报, 2015, 23(4):402-415.
[17] Cheng Z Q, Meng J H. Research advances and perspectives on crop yield estimation models[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4):402-415.
[18] Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011, 115(8):1781-1800.
doi: 10.1016/j.rse.2011.02.019 url:
[19] Qiao C, Sun R, Xu Z, et al. A study of shelterbelt transpiration and cropland evapotranspiration in an irrigated area in the middle reaches of the Heihe River in northwestern China[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(2):369-373.
doi: 10.1109/LGRS.2014.2342219 url:
[20] Bai X, Li Z, Li W, et al. Comparison of machine-learning and CASA models for predicting apple fruit yields from time-series planet imageries[J]. Remote Sensing, 2021, 13(16):3073.
doi: 10.3390/rs13163073 url:
[21] 饶晓燕, 吴建伟, 李春朋, 等. 智慧苹果园“空-天-地”一体化监控系统设计与研究[J]. 中国农业科技导报, 2021, 23(6):59-66.
[21] Rao X Y, Wu J W, Li C P, et al. Design and research on “space-air-ground” integrated monitoring system for intelligent orchard[J]. Journal of Agricultural Science and Technology, 2021, 23(6):59-66.
doi: 10.13304/j.nykjdb.2020.1038
[22] 刘海启. 以精准农业驱动农业现代化加速现代农业数字化转型[J]. 中国农业资源与区划, 2019, 40(1):1-6,73.
[22] Liu H Q. Accelerating the digital transformation of modern agriculture by driving the agricultural modernization with precision agriculture[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(1):1-6,73.
[23] Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards[J]. Journal of Field Robotics, 2017, 34(6):1039-1060.
doi: 10.1002/rob.2017.34.issue-6 url:
[24] Ampatzidis Y, Partel V. UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence[J]. Remote Sensing, 2019, 11(4):410.
doi: 10.3390/rs11040410 url:
[25] 张宏鸣, 张国良, 朱珊娜, 等. 基于U-Net的葡萄种植区遥感识别方法[J]. 农业机械学报, 2022, 53(4):173-182.
[25] Zhang H M, Zhang G L, Zhu S N, et al. Remote sensing recognition method of grape planting regions based on U-Net[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4):173-182.
[26] 王凌, 赵庚星, 朱西存, 等. 6S辐射校正与像元分解结合提高苹果树花期冠层反射率反演精度[J]. 农业工程学报, 2012, 28(9):96-102.
[26] Wang L, Zhao G X, Zhu X C, et al. Improving retrieval accuracy of apple tree canopy reflectance at blossom stage by combining 6S radiometric correction with pixel unmixing method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(9):96-102.
[27] 王爱. 黄土高原苹果树识别与蒸散发过程模拟[D]. 杨凌: 西北农林科技大学, 2020.
[27] Wang A. Apple tree identification and evapotranspiration process simulation on the Loess Plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2020.
[28] 辛群荣. 基于多时相高分影像的山区苹果园地信息提取研究[D]. 淄博: 山东理工大学, 2017.
[28] Xin Q R. Extracting montanic apple orchard information based on multi-temporal high resolution remote sensing image[D]. Zibo: Shandong University of Technology, 2017.
[29] Chandel A K, Khot L R, Sallato B C. Apple powdery mildew infestation detection and mapping using high-resolution visible and multispectral aerial imaging technique[J]. Scientia Horticulturae, 2021, 287:110228.
doi: 10.1016/j.scienta.2021.110228 url:
[30] Senthilnath J, Dokania A, Kandukuri M, et al. Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV[J]. Biosystems Engineering, 2016, 146:16-32.
doi: 10.1016/j.biosystemseng.2015.12.003 url:
[31] Martin M E, Newman S D, Aber J D, et al. Determining forest species composition using high spectral resolution remote sensing data[J]. Remote Sensing of Environment, 1998, 65(3):249-254.
doi: 10.1016/S0034-4257(98)00035-2 url:
[32] 郭逸飞, 吴田军, 骆剑承, 等. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7):1406-1419.
doi: 10.12082/dqxxkx.2022.210594
[32] Guo Y F, Wu T J, Luo J C, et al. Remote sensing mapping of mountain vegetation via uncertainty-based iterative optimization[J]. Journal of Geo-Information Science, 2022, 24(7):1406-1419.
[33] 刘见礼, 廖小罕, 倪文俭, 等. 顾及单木三维形态的无人机立体影像单木识别算法[J]. 地球信息科学学报, 2021, 23(10):1861-1872.
doi: 10.12082/dqxxkx.2021.210117
[33] Liu J L, Liao X H, Ni W J, et al. Individual tree recognition algorithm of UAV stereo imagery considering three-dimensional morphology of tree[J]. Journal of Geo-Information Science, 2021, 23(10):1861-1872.
[34] 颜伟, 周雯, 易利龙, 等. 森林类型遥感分类及变化监测研究进展[J]. 遥感技术与应用, 2019, 34(3):445-454.
[34] Yan W, Zhou W, Yi L L, et al. Research progress of remote sensing classification and change monitoring on forest types[J]. Remote Sensing Technology and Application, 2019, 34(3):445-454.
[35] 刘佳岐. 基于Landsat8遥感影像的扶风县苹果园地信息提取研究[D]. 杨凌: 西北农林科技大学, 2015.
[35] Liu J Q. Research on apple orchards information extraction of Fufeng County based on Landsat8 remote sensing image[D]. Yangling: Northwest Agriculture and Forestry University, 2015.
[36] 郑利娟. 基于高分一/六号卫星影像特征的农作物分类研究[D]. 北京: 中国科学院大学(中国科学院遥感与数字地球研究所), 2017.
[36] Zheng L J. Crop classification using multi-features of Chinese Gaofen-1/6 satelite remote sensing images[D]. Beijing: University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences), 2017.
[37] 陈日强, 李长春, 杨贵军, 等. 无人机机载激光雷达提取果树单木树冠信息[J]. 农业工程学报, 2020, 36(22):50-59.
[37] Chen R Q, Li C C, Yang G J, et al. Extraction of crown information from individual fruit tree by UAV LiDAR[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22):50-59.
[38] Solano F, Di Fazio S, Modica G. A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 83:101912.
doi: 10.1016/j.jag.2019.101912 url:
[39] 胡林, 周国民, 丘耘, 等. 苹果树图像分割算法研究综述[J]. 中国农业科技导报, 2015, 17(2):100-108.
[39] Hu L, Zhou G M, Qiu Y, et al. Review on studying image segment algorithms of apple trees[J]. Journal of Agricultural Science and Technology, 2015, 17(2):100-108.
doi: 10.13304/j.nykjdb.2014.498
[40] Wannasiri W, Nagai M, Honda K, et al. Extraction of mangrove biophysical parameters using airborne LiDAR[J]. Remote Sensing, 2013, 5(4):1787-1808.
doi: 10.3390/rs5041787 url:
[41] Ok A O, Ozdarici-Ok A. 2-D delineation of individual citrus trees from UAV-based dense photogrammetric surface models[J]. International Journal of Digital Earth, 2018, 11(6):583-608.
doi: 10.1080/17538947.2017.1337820 url:
[42] Wu J, Yang G, Yang H, et al. Extracting apple tree crown information from remote imagery using deep learning[J]. Computers and Electronics in Agriculture, 2020, 174:105504.
doi: 10.1016/j.compag.2020.105504 url:
[43] Sun G, Wang X, Yang H, et al. A Canopy information measurement method for modern standardized apple orchards based on UAV multimodal information[J]. Sensors, 2020, 20(10):2985.
doi: 10.3390/s20102985 url:
[44] 代佳佳. 基于高分与多时相中分影像的苹果园地提取[J]. 中国农业资源与区划, 2021, 43(8):140-148.
[44] Dai J J. Apple orchard extraction based on high resolution images and multi-temporal midresolution images[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 43(8):140-148.
[45] De La Fuente-Saiz D, Ortega-Farias S, Fonseca D, et al. Calibration of METRIC model to estimate energy balance over a drip-irrigated apple orchard[J]. Remote Sensing, 2017, 9(7):670.
doi: 10.3390/rs9070670 url:
[46] Apolo-Apolo O, Perez-Ruiz M, Martinez-Guanter J, et al. A cloud-based environment for generating yield estimation maps from apple orchards using UAV imagery and a deep learning technique[J]. Frontiers in Plant Science, 2020, 11:1086.
doi: 10.3389/fpls.2020.01086 pmid: 32765566
[47] Dong X, Zhang Z, Yu R, et al. Extraction of information about individual trees from high-spatial-resolution UAV-acquired images of an orchard[J]. Remote Sensing, 2020, 12(1):133-153.
doi: 10.3390/rs12010133 url:
[48] 邵砾群, 侯建昀, 刘军弟, 等. 苹果栽培模式技术经济评价[J]. 西北农林科技大学学报(社会科学版), 2014, 14(5):78-83.
[48] Shao L Q, Hou J Y, Liu J D, et al. Evaluation on apple cultivation patterns[J]. Journal of Northwest Agriculture and Forestry University (Social Science Edition), 2014, 14(5):78-83.
[49] 唐少飞, 田庆久, 徐凯健, 等. Sentinel-2卫星落叶松林龄信息反演[J]. 遥感学报, 2020, 24(12):1511-1524.
[49] Tang S F, Tian Q J, Xu K J, et al. Age information retrieval of larix gmelinii forest using Sentinel-2 data[J]. Journal of Remote Sensing, 2020, 24(12):1511-1524.
[50] Iizuka K, Tateishi R. Estimation of CO2 sequestration by the forests in Japan by discriminating precise tree age category using remote sensing techniques[J]. Remote Sensing, 2015, 7(11):15082-15113.
doi: 10.3390/rs71115082 url:
[51] Rizeei H M, Shafri H Z M, Mohamoud M A, et al. Oil palm counting and age estimation from WorldView-3 imagery and LiDAR data using an integrated OBIA height model and regression analysis[J]. Journal of Sensors, 2018:2536327.
[52] Robinson T L, Lakso A N, Lordan J, et al. Precision irrigation management of apple with an apple-specific Penman-Monteith model[J] Acta Horticulturae, 2017, 1150:245-250.
[53] 张杰. 基于Zigbee和GPRS的果园智能灌溉控制系统设计[D]. 杨凌: 西北农林科技大学, 2014.
[53] Zhang J. Design of precise irrigation control system of orchard based on Zigbee and GPRS[D]. Yangling: Northwest Agriculture and Forestry University, 2014.
[54] 张俊涛, 李媛, 陈晓莉. 基于无线传感网络的果树精准灌溉系统[J]. 农机化研究, 2014, 36(2):183-187.
[54] Zhang J T, Li Y, Chen X L. Precision irrigation system based on wireless sensor networks for fruit trees[J]. Journal of Agricultural Mechanization Research, 2014, 36(2):183-187.
[55] 毛方东, 许洪斌, 王毅, 等. 基于VB/Matlab的果园移动机器人路径识别系统[J]. 计算机工程, 2017, 43(12):309-314.
[55] Mao F D, Xu H B, Wang Y, et al. Planning recognition system for mobile robot in orchard based on VB/Matlab[J]. Computer Engineering, 2017, 43(12):309-314.
[56] 王毅, 刘波, 何宇, 等. 果园移动机器人路径识别系统[J]. 传感器与微系统, 2020, 39(9):69-72.
[56] Wang Y, Liu B, He Y, et al. Path recognition system of orchard mobile robot[J]. Transducer and Microsystem Technologies, 2020, 39(9):69-72.
[57] Khan S, Tufail M, Khan M T, et al. Deep-learning-based spraying area recognition system for unmanned-aerial-vehicle-based sprayers[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2021, 29(1):241-256.
doi: 10.3906/elk-2004-4 url:
[58] Meng Y, Su J, Song J, et al. Experimental evaluation of UAV spraying for peach trees of different shapes:Effects of operational parameters on droplet distribution[J]. Computers and Electronics in Agriculture, 2021, 170:105282.
doi: 10.1016/j.compag.2020.105282 url:
[59] Zhang J, Lin X, Liu Z, et al. Semi-automatic road tracking by template matching and distance transformation in urban areas[J]. International Journal of Remote Sensing, 2011, 32(23):8331-8347.
doi: 10.1080/01431161.2010.540587 url:
[60] 李朝奎, 曾强国, 方军, 等. 改进全卷积网络方法的高分二号影像农村道路提取[J]. 遥感学报, 2021, 25(9):1978-1988.
[60] Li C K, Zeng Q G, Fang J, et al. Road extraction in rural areas from high resolution remote sensing image using a improved full convolution network[J]. National Remote Sensing Bulletin, 2021, 25(9):1978-1988.
doi: 10.11834/jrs.20219209 url:
[61] Kang W C, Xiang Y M, Wang F, et al. EU-Net:An efficient fully convolutional network for building extraction from optical remote sensing images[J]. Remote Sensing, 2019, 11(23):2813.
doi: 10.3390/rs11232813 url:
[62] 王振庆, 周艺, 王世新, 等. IEU-Net高分辨率遥感影像房屋建筑物提取[J]. 遥感学报, 2021, 25(11):2245-2254.
[62] Wang Z Q, Zhou Y, Wang S X, et al. House building extraction from high-resolution remote sensing images based on IEU-Net[J]. National Remote Sensing Bulletin, 2021, 25(11):2245-2254.
doi: 10.11834/jrs.20210042 url:
[63] Lu L Z, Di L P, Ye Y M. A decision-tree classifier for extracting transparent plastic-mulched landcover from Landsat5 TM images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11):4548-4558.
doi: 10.1109/JSTARS.4609443 url:
[64] Aguilar M A, Vallario A, Aguilar F J, et al. Object-based greenhouse horticultural crop identification from multi-temporal satellite imagery:A case study in Almeria,Spain[J]. Remote Sensing, 2015, 7(6):7378-7401.
doi: 10.3390/rs70607378 url:
[65] 汤紫霞, 李蒙蒙, 汪小钦, 等. 基于GF-2遥感影像的葡萄大棚信息提取[J]. 中国农业科技导报, 2020, 22(11):95-105.
doi: 10.13304/j.nykjdb.2019.0759
[65] Tang Z X, Li M M, Wang X Q, et al. Extraction of grape greenhouses from GF-2 remote sensing images[J]. Journal of Agricultural Science and Technology, 2020, 22(11):95-105.
[66] 陈蜀江, 马静, 李春蕾, 等. 基于二次分类的葡萄干晾房遥感信息挖掘及反演[J]. 西北农业学报, 2015, 24(3):111-120.
[66] Chen S J, Ma J, Li C L, et al. Data mining and retrieval of remote sensing information in raisin room based on secondary classification[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2015, 24(3):111-120.
[67] Zhang J, Lin X, Liu Z, et al. Semi-automatic road tracking by template matching and distance transformation in urban areas[J]. International Journal of Remote Sensing, 2011, 32(23):8331-8347.
doi: 10.1080/01431161.2010.540587 url:
[68] 戴激光, 王杨, 杜阳, 等. 光学遥感影像道路提取的方法综述[J]. 遥感学报, 2020, 24(7):804-823.
[68] Dai J G, Wang Y, Du Y, et al. Development and prospect of road extraction method for optical remote sensing image[J]. Journal of Remote Sensing, 2020, 24(7):804-823.
[69] Maboudi M, Amini J, Hahn M, et al. Road network extraction from VHR satellite images using context aware object feature integration and tensor voting[J]. Remote Sensing, 2016, 8(8):637.
doi: 10.3390/rs8080637 url:
[70] Grinias I, Panagiotakis C, Tziritas G. MRF-based segmentation and unsupervised classification for building and road detection in peri-urban areas of high-resolution satellite images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122:145-166.
doi: 10.1016/j.isprsjprs.2016.10.010 url:
[71] 顾铮鸣, 金晓斌, 杨晓艳, 等. 基于无人机遥感影像监测土地整治项目道路沟渠利用情况[J]. 农业工程学报, 2018, 34(23):85-93.
[71] Gu Z M, Jin X B, Yang X Y, et al. Monitoring roads and canals utilization condition for land consolidation project based on UAV remote sensing image[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(23):85-93.
[72] Stefas N, Bayram H, Isler V. Vision-based monitoring of orchards with UAVs[J]. Computers and Electronics in Agriculture, 2019, 163:104814.
doi: 10.1016/j.compag.2019.05.023 url:
[73] 蒙继华, 程志强, 王一明. WOFOST模型与遥感数据同化的土壤速效养分反演[J]. 遥感学报, 2018, 22(4):546-558.
[73] Meng J H, Cheng Z Q, Wang Y M. Simulating soil available nutrients by a new method based on WOFOST model and remote sensing assimilation[J]. Journal of Remote Sensing, 2018, 22(4):546-558.
[74] 何山, 孙媛媛, 沈掌泉, 等. 大数据时代精准施肥模式实现路径及其技术和方法研究展望[J]. 植物营养与肥料学报, 2017, 23(6):1514-1524.
[74] He S, Sun Y Y, Shen Z Q, et al. Advances in coupling big data technique with nutrient site-specific management:Scheme,metho-ds and outlook[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(6):1514-1524.
[75] Liu Z, Guo P, Liu H, et al. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing[J]. Remote Sensing, 2021, 13(16):3263.
doi: 10.3390/rs13163263 url:
[76] 张晓华. 苹果叶片生理生化参量及其养分的高光谱遥感监测[D]. 杨凌: 西北农林科技大学, 2015.
[76] Zhang X H. The remote sensing monitoring of apple leaves physiological and biochemical parameters and nutrient[D]. Yangling: Northwest Agriculture and Forestry University, 2015.
[77] Perry E M, Davenport J R. Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple[J]. Computers and Electronics in Agriculture, 2007, 59(1-2):56-65.
doi: 10.1016/j.compag.2007.05.002 url:
[78] 曹淑静. 基于GF-1卫星影像的苹果树冠层氮素含量反演[D]. 泰安: 山东农业大学, 2019.
[78] Cao S J. Inversion of nitrogen content in apple trees canopy based on GF-1 satellite image[D]. Taian: Shandong Agricultural University, 2019.
[79] 李美炫, 朱西存, 白雪源, 等. 基于无人机影像阴影去除的苹果树冠层氮素含量遥感反演[J]. 中国农业科学, 2021, 54(10):2084-2094.
doi: 10.3864/j.issn.0578-1752.2021.10.005
[79] Li M X, Zhu X C, Bai X Y, et al. Remote sensing inversion of nitrogen content in apple canopy based on shadow removal in UAV multi-spectral remote sensing images[J]. Scientia Agricultura Sinica, 2021, 54(10):2084-2094.
doi: 10.3864/j.issn.0578-1752.2021.10.005
[80] Gomez-Candon D, Torres-Sanchez J, Labbe S, et al. Water stress assessment at tree scale:High-resolution thermal UAV imagery acquisition and processing[J]. Acta Horticulturae, 2017, 1150:159-166.
[81] Zeggada A, Stella A, Caliendo G, et al. Leaf development index estimation using UAV imagery for fighting apple scab[EB/OL].[2021-10-12].
[82] 郭晓燕. 基于HJ-1A-HSI数据及PROSAIL模型的苹果冠层参数定量反演[D]. 泰安: 山东农业大学, 2019.
[82] Guo X Y. Quantitative inversion of apple canopy parameters based on HJ-1A-HSI data and PROSAIL model[D]. Taian: Shandong Agricultural University, 2019.
[83] 何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展[J]. 农业工程学报, 2015, 31(3):174-189.
[83] He Y, Peng J Y, Liu F, et al. Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3):174-189.
[84] 徐晋, 蒙继华. 农作物叶绿素含量遥感估算的研究进展与展望[J]. 遥感技术与应用, 2016, 31(1):74-85.
[84] Xu J, Meng J H. Overview on estimating crop chlorophyll content with remote sensing[J]. Remote Sensing Technology and Application, 2016, 31(1):74-85.
[85] 高璐璐. 基于遥感数据的低山丘陵区苹果树冠层叶绿素含量反演[D]. 泰安: 山东农业大学, 2017.
[85] Gao L L. Inversion of the apple tree canopy chlorophyll contents in hilly region based on remote sensing data[D]. Taian: Shandong Agricultural University, 2017.
[86] 王凌, 赵庚星, 朱西存, 等. 花期苹果树冠氮素营养状况的卫星遥感反演[J]. 应用生态学报, 2013, 24(10):2863-2870.
[86] Wang L, Zhao G X, Zhu X C, et al. Satellite remote sensing retrieval of canopy nitrogen nutritional status of apple trees at blossom stage[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2863-2870.
[87] 王凌. 苹果树花期叶/冠N、P营养状况的卫星遥感反演研究[D]. 泰安: 山东农业大学, 2012.
[87] Wang L. Satellite remote sensing retrieval of nitrogen and phosphorous nutritional status in apple tree leaves/canopies at blossom stage[D]. Taian: Shandong Agricultural University, 2012.
[88] 宋小林, 吴普特, 赵西宁, 等. 黄土高原肥水坑施技术下苹果树根系及土壤水分布[J]. 农业工程学报, 2016, 32(7):121-128.
[88] Song X L, Wu P T, Zhao X N, et al. Distribution characteristic of soil moisture and roots in rain-fed old apple orchards with water-fertilizer pit on the Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(7):121-128.
[89] 赵佐平, 同延安, 刘芬, 等. 长期不同施肥处理对苹果产量、品质及土壤肥力的影响[J]. 应用生态学报, 2013, 24(11):3091-3098.
[89] Zhao Z P, Tong Y N, Liu F, et al. Effects of different long-term fertilization patterns on Fuji apple yield,quality,and soil fertility on Weibei dryland,Shaanxi Province of Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(11):3091-3098.
[90] 高照全, 赵晨霞, 程建军, 等. 我国4种主要苹果树形冠层结构和辐射三维分布比较研究[J]. 中国生态农业学报, 2012, 20(1):63-68.
[90] Gao Z Q, Zhao C X, Cheng J J, et al. Tree structure and 3-D distribution of radiation in canopy of apple trees with different canopy structures in China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1):63-68.
doi: 10.3724/SP.J.1011.2012.00063 url:
[91] 唐玉薇, 吴彤, 路翔, 等. 矮化砧及对应中间砧苹果叶片光合对光照和CO2响应的模型模拟与评价[J]. 西北农业学报, 2021, 30(12):1812-1823.
[91] Tang Y W, Wu T, Lu X, et al. Model simulation and evaluation of photosynthetic responses of apple leaves of dwarf rootstocks and corresponding interstocks to light and CO2[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(12):1812-1823.
[92] 李燕青, 车升国, 李壮, 等. 辽宁绥中苹果园土壤肥力现状调查研究[J]. 中国果树, 2022(2):68-74.
[92] Li Y Q, Che S G, Li Z, et al. Investigation on soil fertility of apple orchard in Suizhong,Liaoning Province[J]. China Fruits, 2022(2):68-74.
[93] 蔡甲冰, 许迪, 司南, 等. 基于冠层温度和土壤墒情的实时监测与灌溉决策系统[J]. 农业机械学报, 2015, 46(12):133-139.
[93] Cai J B, Xu D, Si N, et al. Real-time monitoring system of crop canopy temperature and soil moisture for irrigation decision-making[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12):133-139.
[94] Das N N, Mohanty B P, Cosh M H, et al. Modeling and assimilation of root zone soil moisture using remote sensing observations in walnut gulch watershed during Smex04[J]. Remote Sensing of Environment, 2008, 112(2):415-429.
doi: 10.1016/j.rse.2006.10.027 url:
[95] Rubio M A, Lopez G, Tovar J, et al. The use of satellite measurements to estimate photosynthetically active radiation[J]. Physics and Chemistry of the Earth, 2005, 30(1-3):159-164.
[96] 潘宁, 王帅, 刘焱序, 等. 土壤水分遥感反演研究进展[J]. 生态学报, 2019, 39(13):4615-4626.
[96] Pan N, Wang S, Liu Y X, et al. Advances in soil moisture retrieval from remote sensing[J]. Acta Ecologica Sinica, 2019, 39(13):4615-4626.
[97] 虞文丹, 张友静, 郑淑倩. 基于作物缺水指数的土壤含水量估算方法[J]. 国土资源遥感, 2015, 27(3):77-83.doi:10.6046/gtzyyg.2015.03.14.
doi: 10.6046/gtzyyg.2015.03.14
[97] Yu W D, Zhang Y J, Zheng S Q. Estimation of soil moisture based on crop water stress index[J]. Remote Sensing for Land and Resources, 2015, 27(3):77-83.doi:10.6046/gtzyyg.2015.03.14.
doi: 10.6046/gtzyyg.2015.03.14
[98] 王祥峰, 蒙继华. 土壤养分遥感监测研究现状及展望[J]. 遥感技术与应用, 2015, 30(6):1033-1041.
[98] Wang X F, Meng J H. Research progress and prospect on soil nutrients monitoring with remote sensing[J]. Remote Sensing Technology and Application, 2015, 30(6):1033-1041.
[99] Lu P, Wang L, Niu Z, et al. Prediction of soil properties using laboratory VIS-NIR spectroscopy and Hyperion imagery[J]. Journal of Geochemical Exploration, 2013, 132:26-33.
doi: 10.1016/j.gexplo.2013.04.003 url:
[100] 董泰锋, 蒙继华, 吴炳方, 等. 光合有效辐射(PAR)估算的研究进展[J]. 地理科学进展, 2011, 30(9):1125-1134.
[100] Dong T F, Meng J H, Wu B F, et al. Overview on the estimation of photosynthetically active radiation[J]. Progress in Geography, 2011, 30(9):1125-1134.
doi: 10.11820/dlkxjz.2011.09.007
[101] Alados I, Olmo F J, Foyo-Moreno I, et al. Estimation of photosynthetically active radiation under cloudy conditions[J]. Agricultural and Forest Meteorology, 2000, 102(1):39-50.
doi: 10.1016/S0168-1923(00)00091-5 url:
[102] Van Laake P E, Sanchez-Azofeifa G A. Simplified atmospheric radiative transfer modelling for estimating incident par using MODIS atmosphere products[J]. Remote Sensing of Environment, 2004, 91(1):98-113.
doi: 10.1016/j.rse.2004.03.002 url:
[103] Van Laake P E, Sanchez-Azofeifa G A. Mapping PAR using MODIS atmosphere products[J]. Remote Sensing of Environment, 2005, 94(4):554-563.
doi: 10.1016/j.rse.2004.11.011 url:
[104] 邹文涛, 吴炳方, 张淼, 等. 农作物长势综合监测——以印度为例[J]. 遥感学报, 2015, 19(4):539-549.
[104] Zou W T, Wu B F, Zhang M, et al. Synthetic method for crop condition analysis:A case study in India[J]. Journal of Remote Sensing, 2015, 19(4):539-549.
[105] 胡荣明, 魏曼, 竞霞, 等. 基于成像高光谱的苹果树叶片病害区域提取方法研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(8):95-99.
[105] Hu R M, Wei M, Jing X, et al. Research for extracting method of apple leaf ill spots based on hyperspectral image[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2012, 40(8):95-99.
[106] 陈澜. 基于高光谱遥感的苹果生化参数估算模型研究[D]. 杨凌: 西北农林科技大学, 2020.
[106] Chen L. Study on the estimation model of apple biochemical parameters based on hyperspectral remote sensing[D]. Yangling: Northwest Agriculture and Forestry University, 2020.
[107] 蒙继华, 杜鑫, 张淼, 等. 物候信息在大范围作物长势遥感监测中的应用[J]. 遥感技术与应用, 2014, 29(2):278-285.
[107] Meng J H, Du X, Zhang M, et al. Integrating crop phenophase information in large-area crop condition evaluation with remote sensing[J]. Remote Sensing Technology and Application, 2014, 29(2):278-285.
[108] Meng S, Zhong Y, Luo C, et al. Optimal temporal window selection for winter wheat and rapeseed mapping with Sentinel-2 images:A case study of Zhongxiang in China[J]. Remote Sensing, 2020, 12(2):226.
doi: 10.3390/rs12020226 url:
[109] 史舟, 梁宗正, 杨媛媛, 等. 农业遥感研究现状与展望[J]. 农业机械学报, 2015, 46(2):247-260.
[109] Shi Z, Liang Z Z, Yang Y Y, et al. Status and prospect of agricultural remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2):247-260.
[110] Yang C. Remote sensing and precision agriculture technologies for crop disease detection and management with a practical application example[J]. Engineering, 2020, 6(5):528-32.
doi: 10.1016/j.eng.2019.10.015 url:
[111] 万祖毅. 基于无人机遥感的柑橘果树信息提取及应用研究[D]. 重庆: 西南大学, 2020.
[111] Wan Z Y. Extraction and application of citrus fruit tree information based on UAV remote sensing[D]. Chongqing: Southwest University, 2020.
[112] 张蕾, 侯英雨, 郑昌玲, 等. 作物长势评估指数的设计与应用[J]. 应用气象学报, 2019, 30(5):543-554.
[112] Zhang L, Hou Y Y, Zheng C L, et al. The Construction an application index to crop growing condition[J]. Journal of Applied Meteo-rological Science, 2019, 30(5):543-554.
[113] 刘峰, 李存军, 董莹莹, 等. 基于遥感数据与作物生长模型同化的作物长势监测[J]. 农业工程学报, 2011, 27(10):101-106.
[113] Liu F, Li C J, Dong Y Y, et al. Monitoring crop growth based on assimilation of remote sensing data and crop simulation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10):101-106.
[114] 高照全, 魏钦平, 王小伟, 等. 果树光合作用数学模拟的研究进展[J]. 果树学报, 2003(5):338-344.
[114] Gao Z Q, Wei Q P, Wang X W, et al. Advances in mathematical simulation of photosynthesis in fruit tree[J]. Journal of Fruit Science, 2003(5):338-344.
[115] Darbyshire R, Farrera I, Martinez-Luscher J, et al. A global evaluation of apple flowering phenology models for climate adaptation[J]. Agricultural and Forest Meteorology, 2017, 240:67-77.
[116] Costes E, Regnard J L, Sinoquet H, et al. Estimating transpiration of apple tree branches from leaf stomatal conductance measurements:A first assessment of RATP model on apple trees[EB/OL].[2021-10-12].
[117] 邵主恩, 赵西宁, 高晓东, 等. 基于STICS模型的黄土高原苹果园生态系统服务评估[J]. 生态学报, 2021, 41(6):2212-2224.
[117] Shao Z E, Zhao X N, Gao X D, et al. Assessing ecosystem services in apple orchard in the Loess Plateau based on STICS model[J]. Acta Ecologica Sinica, 2021, 41(6):2212-2224.
[118] 张丽娜, 李军, 范鹏, 等. 黄土高原半干旱区不同密度山地苹果园水分生产力模拟[J]. 应用生态学报, 2013, 24(10):2878-2887.
[118] Zhang L N, Li J, Fan P, et al. Water productivity of apple orchards with different planting densities in semi-arid mountainous regions of Loess Plateau,Northwest China:A simulation study[J]. Chinese Journal of Applied Ecology, 2013, 24(10):2878-2887.
[119] 邬定荣, 霍治国, 王培娟, 等. 陕西苹果花期机理性预报模型的适用性评价[J]. 应用气象学报, 2019, 30(5):555-564.
[119] Wu D R, Huo Z G, Wang P J, et al. The applicability of mechanism phenology models to simulating apple flowering date in Shaanxi Province[J]. Journal of Applied Meteorological Science, 2019, 30(5):555-564.
[120] 宋安利. 陕北山地苹果节水灌溉制度研究——以绥德县为例[J]. 水资源与水工程学报, 2021, 32(3):219-224.
[120] Song A L. Water-saving irrigation scheduling of mountain apples in Northern Shaanxi:A case study of Suide County[J]. Journal of Water Resources and Water Engineering, 2021, 32(3):219-224.
[121] Fernandez J E, Cuevas M V. Irrigation scheduling from stem diameter variations:A review[J]. Agricultural and Forest Meteorology, 2010, 150(2):135-151.
doi: 10.1016/j.agrformet.2009.11.006 url:
[122] Acevedo-Opazo C, Tisseyre B, Guillaume S, et al. The potential of high spatial resolution information to define within-vineyard zones related to vine water status[J]. Precision Agriculture, 2008, 9(5):285-302.
doi: 10.1007/s11119-008-9073-1 url:
[123] De La Fuente-Sáiz D, Ortega-Farias S, Ortega-Salazar S, et al. Estimation of water requirements for a drip-irrigated apple orchard using Landsat7 satellite images[J]. Acta Horticulturae, 2017, 1150:181-188.
[124] Virlet N, Gomez-Candon D, Lebourgeois V, et al. Contribution of high-resolution remotely sensed thermal-infrared imagery to high-throughput field phenotyping of an apple progeny submitted to water constraints[EB/OL].[2021-10-12].
[125] 周倜, 彭志晴, 辛晓洲, 等. 非均匀地表蒸散遥感研究综述[J]. 遥感学报, 2016, 20(2):257-277.
[125] Zhou T, Peng Z Q, Xin X Z, et al. Remote sensing research of evapo-transpiration over heterogeneous surfaces:A review[J]. Journal of Remote Sensing, 2016, 20(2):257-277.
[126] Gómez-Candón D, Virlet N, Labbe S, et al. Field phenotyping of water stress at tree scale by UAV-sensed imagery:New insights for thermal acquisition and calibration[J]. Precision Agriculture, 2016, 17(6):786-800.
doi: 10.1007/s11119-016-9449-6 url:
[127] Virlet N, Lebourgeois V, Martinez S, et al. Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints[J]. Journal of Experimental Botany, 2014, 65(18):5429-5442.
doi: 10.1093/jxb/eru309 pmid: 25080086
[128] Ortega-Farias S, Lopez-Olivari R. Validation of a two-layer model to estimate latent heat flux and evapotranspiration in a drip-irrigated olive orchard[J]. Transactions of the Asabe, 2012, 55(4):1169-1178.
doi: 10.13031/2013.42237 url:
[129] Isberie C, Labbe S, Jolivot A, et al. Some contributions of remote sensing for orchard irrigation scheduling resulting from the Telerieg research program in the south-west of France[EB/OL].[2021-10-12].
[130] 许敏. 渭北高原红富士苹果园土壤养分特征及施肥管理研究[D]. 杨凌: 西北农林科技大学, 2015.
[130] Xu M. Research on soil nutrient characteristics and fertilization management of Fuji apple orchards in Weibei Plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2015.
[131] 朱西存, 赵庚星, 董芳, 等. 基于高光谱的苹果花磷素含量监测模型[J]. 应用生态学报, 2009, 20(10):2424-2430.
[131] Zhu X C, Zhao G X, Dong F, et al. Monitoring models for phosphorus content of apple flowers based on hyperspectrum[J]. Chinese Journal of Applied Ecology, 2009, 20(10):2424-2430.
[132] 朱西存, 赵庚星, 王凌, 等. 基于高光谱的苹果花氮素含量预测模型研究[J]. 光谱学与光谱分析, 2010, 30(2):416-420.
[132] Zhu X C, Zhao G X, Wang L, et al. Hyperspectrum based prediction model for nitrogen content of apple flowers[J]. Spectroscopy and Spectral Analysis, 2010, 30(2):416-420.
[133] 李丙智, 李敏夏, 周璇, 等. 苹果树叶片全氮含量高光谱估算模型研究[J]. 遥感学报, 2010, 14(4):761-773.
[133] Li B Z, Li M X, Zhou X, et al. Hyperspectral estimation models for nitrogen contents of apple leaves[J]. Journal of Remote Sensing, 2010, 14(4):761-773.
[134] 邢东兴, 常庆瑞. 基于光谱分析的果树叶片全氮、全磷、全钾含量估测研究——以红富士苹果树为例[J]. 西北农林科技大学学报(自然科学版), 2009, 37(2):141-147,54.
[134] Xing D X, Chang Q R. Research on predicting the TN,TP,TK contents of fresh fruit tree leaves by spectral analysis with Red Fuji apple tree as an example[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2009, 37(2):141-147,54.
[135] 王凌, 赵庚星, 朱西存, 等. 苹果盛果期冠层高光谱与其组分特征的定量模型研究[J]. 光谱学与光谱分析, 2010, 30(10):2719-2723.
[135] Wang L, Zhao G X, Zhu X C, et al. Quantitative models between canopy hyperspectrum and its component features at apple tree prosperous fruit stage[J]. Spectroscopy and Spectral Analysis, 2010, 30(10):2719-2723.
[136] Velemis D A D, Bladenopoulou S. Leaf nutrient levels of apple orchards (cv.Starkrimson) in relation to crop yield[J]. Advances in Horticultural Science, 1999, 13(4):147-150.
[137] 王玮. 丰县苹果主要病虫害防控及防治调查分析[D]. 南京: 南京农业大学, 2019.
[137] Wang W. Investigation and analysis on prevention and control of main pests and diseases of apple in Fengxian[D]. Nanjing: Nanjing Agricultural University, 2019.
[138] Oerke E C, Froehling P, Steiner U. Thermographic assessment of scab disease on apple leaves[J]. Precision Agriculture, 2011, 12(5):699-715.
doi: 10.1007/s11119-010-9212-3 url:
[139] Glenn D M, Tabb A. Evaluation of five methods to measure normalized difference vegetation index (NDVI) in apple and citrus[J]. International Journal of Fruit Science, 2019, 19(2):191-210.
doi: 10.1080/15538362.2018.1502720 url:
[140] Delalieux S, Van Aardt J, Keulemans W, et al. Detection of biotic stress (venturia inaequalis) in apple trees using hyperspectral data:Non-parametric statistical approaches and physiological implications[J]. European Journal of Agronomy, 2007, 27(1):130-143.
doi: 10.1016/j.eja.2007.02.005 url:
[141] Krezhova D, Stoev A, Maneva S. Detection of biotic stress caused by apple stem grooving virus in apple trees using hyperspectral reflectance analysis[J]. Comptes Rendus De L Academie Bulgare Des Sciences, 2015, 68(2):175-182.
[142] Riom J, Goillot C, Fabre J P. Remote-sensing of matsucoccus-feytaudi duc (coccoidea,margarodidae) attacks in the maritime pine forests of Southeastern France,using trichromatic microdensito-metry on irc films[J]. Annales Des Sciences Forestieres, 1979, 36(4):299-320.
doi: 10.1051/forest/19790403 url:
[143] 张竞成, 袁琳, 王纪华, 等. 作物病虫害遥感监测研究进展[J]. 农业工程学报, 2012, 28(20):1-11.
[143] Zhang J C, Yuan L, Wang J H, et al. Research progress of crop diseases and pests monitoring based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(20):1-11.
[144] 黄文江, 刘林毅, 董莹莹, 等. 基于遥感技术的作物病虫害监测研究进展[J]. 农业工程技术, 2018, 38(9):39-45.
[144] Huang W J, Liu L Y, Dong Y Y, et al. Research advances on monitoring crop diseases and insect pests based on remote sensing technology[J]. Agricultural Engineering Technology, 2018, 38(9):39-45.
[145] 邢东兴. 基于高光谱数据的果树理化性状信息提取研究[D]. 杨凌: 西北农林科技大学, 2009.
[145] Xing D X. Resenarch on extraction of the information of physical and chemical properties of fruit trees based on spectral reflectanch data[D]. Yangling: Northwest Agriculture and Forestry University, 2009.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[3] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[4] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[5] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[6] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[7] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[8] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[9] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[10] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[11] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[12] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[13] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[14] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[15] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech