Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (1) : 49-57     DOI: 10.6046/zrzyyg.2022381
|
Application of high-resolution InSAR technique in monitoring deformations in the Beijing Daxing International Airport
ZHAO Xia1,2(), MA Xinyan1,2(), YU Qian1,2, WANG Zhaobing1,2
1. China Airport Planning & Design Institute Co., Ltd., Beijing 100029, China
2. Observation and Research Base of Transport Industray of Airport Engineering Safety and Long-term Performance, Beijing 100029, China
Download: PDF(24086 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The Beijing Daxing International Airport, located in the Yufa—Lixian area of Daxing District, is one of Beijing’s five major land subsidence areas. Differential deformations pose risks to the airport’s safe and stable operation. By applying the time-series interferometric synthetic aperture Radar (InSAR) technique, this study obtained the spatio-temporal characteristics of the airport’s deformations from 39 scenes of high-resolution COSMO-SkyMed (CSK) SAR images taken from September 2019 to November 2021. The monitoring results, with high accuracy, are roughly consistent with level monitoring results. Findings indicate that the airport’s subsidence lasted from 2019 to 2021, with the highest subsidence rate measured at -47.5 mm/a and a maximum cumulative subsidence amount of -103.84 mm. Notably, all four runways exhibited varying degrees of differential subsidence. Furthermore, this study delved into the spatio-temporal characteristics of deformations in the runways, as well as deformations in other high-deformation zones such as terminal buildings, maintenance aprons, oil tank areas, and the business jet apron. By combining the foundation treatment, this study analyzed the factors influencing the airport’s subsidence, providing a reference for the airport’s safe and stable operation.

Keywords time-series InSAR      deformation monitoring      Beijing Daxing International Airport      COSMO-SkyMed      influencing factor     
ZTFLH:  TP79  
  P237  
Issue Date: 13 March 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xia ZHAO
Xinyan MA
Qian YU
Zhaobing WANG
Cite this article:   
Xia ZHAO,Xinyan MA,Qian YU, et al. Application of high-resolution InSAR technique in monitoring deformations in the Beijing Daxing International Airport[J]. Remote Sensing for Natural Resources, 2024, 36(1): 49-57.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022381     OR     https://www.gtzyyg.com/EN/Y2024/V36/I1/49
Fig.1  Geographical location of the study area
Fig.2  Functional division of Daxing International Airport
Fig.3  Spatial perpendicular baseline of datas
Fig.4  Mean velocity map of study area
Fig.5  Deformation information of west 1st airfield
Fig.6  Cumulative displacement of west 1st runway
Fig.7  Deformation information of west 2nd airfield
Fig.8  Cumulative displacement of west 2nd runway
Fig.9  Deformation information of east airfield
Fig.10  Cumulative displacement of east runway
Fig.11  Deformation information of north airfield
Fig.12  Cumulative displacement of north runway
跑道 位置 坡度允
许值
坡度变化
允许值
坡度变化
监测值
西一跑道
(北-南)
北端1/4 0.80 0.78 0.002 07
中部1/2 1.25 1.05
南端1/4 0.80 0.78
西二跑道
(北-南)
北端1/4 0.80 0.78 0.002 46
中部1/2 1.25 1.05
南端1/4 0.80 0.78
北跑道
(西-东)
北端1/4 0.80 0.78 0.001 99
中部1/2 1.25 1.05
南端1/4 0.80 0.78
东跑道(北-南) 北端1/4 0.80 0.60 0.001 21
中部1/2 1.25 1.25
南端1/4 0.80 1.25
Tab.1  Runway longitudinal slope control index (%)
Fig.13  Cumulative displacement of large deformation area
Fig.14  Time-series information of large deformation area
Fig.15  Standard deviation of deformation rate
点名 水准测量结果 CSK观测结果 差值
E -19.1 -19.65 0.55
F -26.4 -25.69 0.71
Tab.2  Comparison of leveling measurement results with InSAR (mm)
Fig.16  Overlay map of ground-based processing and InSAR monitoring results of Daxing Airport
[1] Xu Y S, Shen S L, Cai Z Y, et al. The state of land subsidence and prediction approaches due to groundwater withdrawal in China[J]. Natural Hazards, 2008, 45(1):123-135.
doi: 10.1007/s11069-007-9168-4 url: http://link.springer.com/10.1007/s11069-007-9168-4
[2] 郭萌, 陈刚, 黄骁, 等. 北京大兴规划新城地面沉降研究[J]. 城市地质, 2011, 6(1):17-21.
[2] Guo M, Chen G, Huang X, et al. Study on the surface subsidence in Beijing metro planning Daxing[J]. Urban Geology, 2011, 6(1):17-21.
[3] 罗勇, 贾三满, 赵波, 等. 北京南部地区地面沉降发育特征及成因分析[J]. 城市地质, 2011, 6(3):1-5,21.
[3] Luo Y, Jia S M, Zhao B, et al. Characteristics and causes of land subsidence in the south of Beijing[J]. Urban Geology, 2011, 6(3):1-5,21.
[4] Jiang L, Lin H. Integrated analysis of SAR interferometric and geological data for investigating long-term reclamation settlement of Chek Lap Kok Airport,Hong Kong[J]. Engineering Geology, 2010, 110(3/4):77-92.
doi: 10.1016/j.enggeo.2009.11.005 url: https://linkinghub.elsevier.com/retrieve/pii/S0013795209002956
[5] Dong J, Zhang L, Li M, et al. Measuring precursory movements of the recent Xinmo landslide in Mao County,China with Sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 2018, 15(1):135-144.
doi: 10.1007/s10346-017-0914-8 url: http://link.springer.com/10.1007/s10346-017-0914-8
[6] Jiang Y, Liao M, Wang H, et al. Deformation monitoring and analysis of the geological environment of Pudong international airport with persistent scatterer SAR interferometry[J]. Remote Sensing, 2016, 8(12):1021.
doi: 10.3390/rs8121021 url: http://www.mdpi.com/2072-4292/8/12/1021
[7] 麻源源, 左小清, 麻卫峰, 等. 基于SBAS-InSAR技术对昆明机场高边坡沉降监测研究[J]. 工程勘察, 2018, 46(7):22-27,39.
[7] Ma Y Y, Zuo X Q, Ma W F, et al. Kunming airport high slope settlement monitoring based on SBAS-InSAR[J]. Geotechnical Investigation & Surveying, 2018, 46(7):22-27,39.
[8] Dai K, Shi X, Gou J, et al. Diagnosing subsidence geohazard at Beijing capital international airport,from high-resolution SAR interferometry[J]. Sustainability, 2020, 12(6):2269.
doi: 10.3390/su12062269 url: https://www.mdpi.com/2071-1050/12/6/2269
[9] 张双成, 司锦钊, 徐永福, 等. 时序InSAR用于安康膨胀土机场稳定性监测[J]. 武汉大学学报(信息科学版), 2021, 46(10):1519-1528.
[9] Zhang S C, Si J Z, Xu Y F, et al. Time-series InSAR for stability monitoring of Ankang Airport with expansive soil[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1519-1528.
[10] Shi X, Chen C, Dai K, et al. Monitoring and predicting the subsidence of Dalian Jinzhou Bay International Airport,China by integrating InSAR observation and Terzaghi consolidation theory[J]. Remote Sensing, 2022, 14(10):2332.
doi: 10.3390/rs14102332 url: https://www.mdpi.com/2072-4292/14/10/2332
[11] 丛易敏行. 机场场道变形监测及预警研究[D]. 北京: 北京航空航天大学, 2020.
[11] Cong Y M X. Research on monitoring and prediction of deformation on airport runway[D]. Beijing: Beihang University, 2020.
[12] 赵建华, 张晓峰, 王路兵, 等. 北京大兴国际机场绿色运营实践与展望[J]. 环境保护, 2021, 49(11):18-21.
[12] Zhao J H, Zhang X F, Wang L B, et al. Practice and prospect of green operation of Beijing Daxing International Airport[J]. Environmental Protection, 2021, 49(11):18-21.
[13] Caltagirone F, Angino G, Coletta A, et al. COSMO-SkyMed program:Status and perspectives[M].Pisa,Italy: 2003:24-26.
[14] Battazza F, Coletta A, Lopinto E, et al. COSMO-SkyMed an existing opportunity for observing the Earth[J]. Journal of Geodynamics, 2010, 49(3/4):171-180.
doi: 10.1016/j.jog.2010.01.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0264370710000050
[15] Hu L, Dai K, Xing C, et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82:101886.
doi: 10.1016/j.jag.2019.05.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243418308821
[16] Fattahi H. Geodetic imaging of tectonic deformation with InSAR[D]. Miami: University of Miami, 2015.
[17] Gagliardi V, Bianchini Ciampoli L, Trevisani S, et al. Testing sentinel-1 SAR interferometry data for airport runway monitoring:A geostatistical analysis[J]. Sensors, 2021, 21(17):5769.
doi: 10.3390/s21175769 url: https://www.mdpi.com/1424-8220/21/17/5769
[18] Liu G, Ding X, Chen Y, et al. Ground settlement of Chek Lap Kok Airport,Hong Kong,detected by satellite synthetic aperture Radar interferometry[J]. Chinese Science Bulletin, 2001, 46(21):1778-1782.
doi: 10.1007/BF02900548 url: http://link.springer.com/10.1007/BF02900548
[19] Puzrin A M, Alonso E E, Pinyol N M. Unexpected excessive settlements:Kansai international airport,Japan[M]//Geomechanics of Failures. Dordrecht:Springer, 2010:23-43.
[20] White G. State of the art:Asphalt for airport pavement surfacing[J]. International Journal of Pavement Research and Technology, 2018, 11(1):77-98.
doi: 10.1016/j.ijprt.2017.07.008 url: https://linkinghub.elsevier.com/retrieve/pii/S1996681417300068
[21] 梁永辉, 王卫东, 冯世进, 等. 高填方机场湿陷性粉土地基处理现场试验研究[J]. 岩土工程学报, 2022, 44(6):1027-1035.
[21] Liang Y H, Wang W D, Feng S J, et al. Field study on treatment of collapsible silt for high-fill airport project[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6):1027-1035.
[1] JIN Xintian, WANG Shijie, ZHANG Lanjun, GAO Xingyue. InSAR-based monitoring and analysis of Menyuan earthquake-induced surface deformations[J]. Remote Sensing for Natural Resources, 2024, 36(1): 26-34.
[2] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[3] WANG Ning, JIANG Decai, ZHENG Xiangxiang, ZHONG Chang. Assessing the susceptibility of slope geological hazards based on multi-source heterogeneous data: A case study of Longgang District, Shenzhen City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 122-129.
[4] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[5] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[6] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[7] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[8] Qun WANG, Jinghui FAN, Wei ZHOU, Weilin YUAN, Liqiang TONG, Zhaocheng GUO. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
[9] MA Huiyun, ZHAO Guoqing, ZOU Zhengrong, ZHANG Weikang. Verification of the retrieval algorithm and analysis of influencing factors of fog physical parameters based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 122-128.
[10] LIU Zhimin, LI Yongsheng, ZHANG Jingfa, LUO Yi, LIU Bin. An analysis of surface deformation in the Changzhi mining area using small baseline InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 37-42.
[11] HUANG Zhao-Quan, ZHANG Deng-Rong, WANG Fan, DANG Fu-Xing, LI Zhi-Zhong. Differential SAR Interferometry for the Monitoring of Underground Coal Spontaneous Combustion Zone Surface Deformation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 85-90.
[12] LI Min-Guang, LI Ying-Cheng, XUE Yan-Li, YE Dong-Mei. A Discussion on an Object-oriented Approach to Island Recognition Based
on Multi-source and Multi-temporal Remotely Sensed Data
[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(1): 65-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech