Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 178-185     DOI: 10.6046/zrzyyg.2022294
|
Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model
ZHONG Xiaoyong1,2(), LI Hongyi3,4, GUO Dongyan2, XIE Modian3,4, ZHAO Wanru3,4, HU Bifeng3,4()
1. School of Finance and Public Administration, Jiangxi University of Finance and Economics, Nanchang 330013, China
2. Chinese Academy of Natural Resources Economics, Beijing 101149, China
3. School of Tourism and Urban Management, Jiangxi University of Finance and Economics, Nanchang 330013, China
4. Key Laboratory of Data Science in Finance and Economics, Jiangxi University of Finance and Economics, Nanchang 330013, China
Download: PDF(4067 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study aims to compare the accuracy of random forest(RF) and ordinary kriging(OK) model for predicting spatial distribution of soil pH in arable land of Jiangxi Province using different covariates combination, and assess the feasibility and potential of RF method for improving the prediction accuracy of soil pH value. The RF algorithm is used to predict the pH value of cultivated soil in Jiangxi Province based on environmental covariate such as climate, topography and vegetation, combined with soil properties and cultivated land use conditions, identify the main influencing factors. The results produced by the RF was compared with the classical OK interpolation model. Our results showed that the accuracy of RF-A model with soil properties and cultivated land use conditions as environmental variables is better than that of RF-B model which only including terrain, climate and vegetation attributes as environmental variables. Climatic condition is the dominate factor which control the spatial variation of soil pH. the topographic factors and anthropogenic factors also have essential effect on spatial variability of soil pH. Thus, this study proved RF method has theoretical and practical significance for improving the accuracy of soil pH prediction at large-scale.

Keywords arable land      soil pH      random forest      Jiangxi Province      influencing factor     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoyong ZHONG
Hongyi LI
Dongyan GUO
Modian XIE
Wanru ZHAO
Bifeng HU
Cite this article:   
Xiaoyong ZHONG,Hongyi LI,Dongyan GUO, et al. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022294     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/178
Fig.1  Sampling locations in study area
变量类别 具体指标 数据来源
地形变量 地貌类型、高程、坡度、坡向、剖面曲率、平面曲率、沟谷深度、地形湿度指数、垂直到沟谷距离和多分辨率谷底平坦度 中国科学院资源环境科学数据中心(http://www.resdc.cn/)
气候变量 年均气温、年降水量 中国科学院资源环境科学数据中心(http://www.resdc.cn/)
植被指数 归一化植被指数 中国科学院资源环境科学数据中心(http://www.resdc.cn/)
土壤属性 土壤类型、有机质、有效磷、速效钾、全氮、全磷、全钾、阳离子交换量、成土母质和耕层质地 2018年江西省耕地质量等别数据库、1980年和2010年江西省农业测土配方项目实测数据
耕地利用条件 灌溉保证率、排水条件、氮肥用量、磷肥P2O5用量、钾肥K2O用量、秸秆还田比例和秸秆还田量 2018年江西省耕地质量等别数据库
Tab.1  Data sources of environmental covariates used for predicting pH
组别 mtry ntree 训练集r 验证集r
1组 2 300 0.969 0.551
600 0.970 0.558
900 0.970 0.556
1 200 0.970 0.559
1 500 0.970 0.555
2组 4 300 0.970 0.567
600 0.970 0.574
900 0.970 0.573
1 200 0.971 0.573
1 500 0.971 0.572
3组 6 300 0.969 0.579
600 0.969 0.578
900 0.970 0.579
1 200 0.970 0.580
1 500 0.970 0.580
4组 8 300 0.969 0.582
600 0.970 0.582
900 0.970 0.583
1 200 0.970 0.582
1 500 0.969 0.581
Tab.2  Optimization of critical parameters for RF model
预测模型 抽样比 训练集 验证集
r ME MAE RMSE r ME MAE RMSE
RF-A 8∶2 0.970 -0.004 0.121 0.167 0.599 -0.009 0.291 0.392
7∶3 0.970 -0.004 0.121 0.167 0.567 -0.014 0.299 0.401
6∶4 0.970 -0.004 0.122 0.168 0.566 -0.018 0.302 0.406
RF-B 8∶2 0.966 -0.005 0.127 0.175 0.548 -0.023 0.307 0.413
7∶3 0.967 -0.005 0.127 0.175 0.525 -0.019 0.308 0.418
6∶4 0.967 -0.005 0.127 0.174 0.504 -0.014 0.314 0.425
OK 8∶2 0.679 0.002 0.261 0.364 0.559 0.009 0.311 0.409
7∶3 0.683 0.001 0.259 0.357 0.588 0.007 0.289 0.394
6∶4 0.652 0.002 0.278 0.379 0.541 0.010 0.328 0.414
Tab.3  Comparison of model performance with different training and validation dataset ratios
Fig.2  Relative importance of covariates for RF-A model
Fig.3  Distribution of soil pH produced by RF-A, RF-B and OK model
Fig.4  Scatter plot of soil pH predicted and measured by RF-A model
Fig.5  Relevance of pH and influencing factors
[1] 毛伟, 李文西, 高晖, 等. 扬州市耕地土壤pH值30年演变及其驱动因子[J]. 植物营养与肥料学报, 2017, 23(4):883-893.
[1] Mao W, Li W X, Gao H, et al. pH variation and the driving factors of farmlands in Yangzhou for 30 years[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(4):883-893.
[2] Oh N H, Richter D D. Soil acidification induced by elevated atmospheric CO2[J]. Global Change Biology, 2004, 10(11):1936-1946.
doi: 10.1111/gcb.2004.10.issue-11 url: https://onlinelibrary.wiley.com/toc/13652486/10/11
[3] Kirk G J D, Bellamy P H, Lark R M. Changes in soil pH across England and Wales in response to decreased acid deposition[J]. Global Change Biology, 2010, 16(11):3111-3119.
doi: 10.1111/gcb.2010.16.issue-11 url: https://onlinelibrary.wiley.com/toc/13652486/16/11
[4] Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition[J]. Environmental Research Letters, 2015, 10(2):024019.
doi: 10.1088/1748-9326/10/2/024019 url: https://iopscience.iop.org/article/10.1088/1748-9326/10/2/024019
[5] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[6] Hu B F, Jia X L, Hu J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta,China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9):1042.
doi: 10.3390/ijerph14091042 url: http://www.mdpi.com/1660-4601/14/9/1042
[7] Hu B F, Shao S, Fu Z, et al. Identifying heavy metal pollution hot spots in soil-rice systems:A case study in South of Yangtze River Delta,China[J]. Science of the Total Environment, 2019, 658:614-625.
doi: 10.1016/j.scitotenv.2018.12.150 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969718349957
[8] 杨之江, 陈效民, 景峰, 等. 基于GIS和地统计学的稻田土壤养分与重金属空间变异[J]. 应用生态学报, 2018, 29(6):1893-1901.
doi: 10.13287/j.1001-9332.201806.036
[8] Yang Z J, Chen X M, Jing F, et al. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and geostatistics[J]. Chinese Journal of Applied Ecology, 2018, 29(6):1893-1901.
[9] Xia F, Hu B, Zhu Y, et al. Improved mapping of potentially toxic elements in soil via integration of multiple data sources and various geostatistical methods[J]. Remote Sensing, 2020, 12(22):3775.
doi: 10.3390/rs12223775 url: https://www.mdpi.com/2072-4292/12/22/3775
[10] Hu B, Zhou Y, Jiang Y, et al. Spatio-temporal variation and source changes of potentially toxic elements in soil on a typical plain of the Yangtze River Delta,China (2002—2012)[J]. Journal of Environmental Management, 2020, 271:110943.
doi: 10.1016/j.jenvman.2020.110943 url: https://linkinghub.elsevier.com/retrieve/pii/S0301479720308720
[11] 丁亚鹏, 张俊华, 刘玉寒, 等. 基于GWR模型的伊河流域土壤有机碳空间分布特征及影响因素分析[J]. 生态学报, 2021, 41(12):4876-4885.
[11] Ding Y P, Zhang J H, Liu Y H, et al. Spatial distribution characteristics and influencing factors of soil organic carbon in Yihe River basin based on GWR model[J]. Acta Ecologica Sinica, 2021, 41(12):4876-4885.
[12] 张阳, 屠乃美, 谢会雅, 等. 茶陵县烟稻复种区土壤养分时空变异特征[J]. 土壤通报, 2021, 52(2):297-305.
[12] Zhang Y, Tu N M, Xie H Y, et al. Spatial and temporal variation of soil nutrients in tobacco-rice multiple-cropping area of Chaling[J]. Chinese Journal of Soil Science, 2021, 52(2):297-305.
doi: 10.1046/j.1365-2389.2001.00380.x url: https://bsssjournals.onlinelibrary.wiley.com/doi/10.1046/j.1365-2389.2001.00380.x
[13] McBratney A B, Santos M L M, Minasny B. On digital soil mapping[J]. Geoderma, 2003, 117(1-2):3-52.
doi: 10.1016/S0016-7061(03)00223-4 url: https://linkinghub.elsevier.com/retrieve/pii/S0016706103002234
[14] Teng H, Rossel R A V, Shi Z, et al. Updating a national soil classification with spectroscopic predictions and digital soil mapping[J]. Catena, 2018, 164:125-134.
doi: 10.1016/j.catena.2018.01.015 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816218300158
[15] Peng J, Biswas A, Jiang Q, et al. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province,China[J]. Geoderma, 2019, 337:1309-1319.
doi: 10.1016/j.geoderma.2018.08.006
[16] 庞龙辉, 刘峰, 赵霞, 等. 青海省表层土壤属性数字制图[J]. 土壤通报, 2019, 50(3):505-513.
[16] Pang L H, Liu F, Zhao X, et al. Digital mapping of topsoil attributes in Qinghai Province[J]. Chinese Journal of Soil Science, 2019, 50(3):505-513.
doi: 10.1046/j.1365-2389.1999.00245.x url: https://bsssjournals.onlinelibrary.wiley.com/doi/10.1046/j.1365-2389.1999.00245.x
[17] Arrouays D, Poggio L, Guerrero O A S, et al. Digital soil mapping and GlobalSoilMap.Main advances and ways forward[J]. Geoderma Regional, 2020, 21:e00265.
doi: 10.1016/j.geodrs.2020.e00265 url: https://linkinghub.elsevier.com/retrieve/pii/S2352009420300146
[18] Li H, Liu X, Hu B, et al. Field-scale characterization of spatio-temporal variability of soil salinity in three dimensions[J]. Remote Sensing, 2020, 12(24):4043.
doi: 10.3390/rs12244043 url: https://www.mdpi.com/2072-4292/12/24/4043
[19] Yan F, Shang G W, Zhang J, et al. Depth-to-bedrock map of China at a spatial resolution of 100 meters[J]. Scientific Data, 2020, 7(1):1-13.
doi: 10.1038/s41597-019-0340-y
[20] Fu T, Zhao R, Hu B, et al. Novel framework for modelling the cadmium balance and accumulation in farmland soil in Zhejiang Province,east China:Sensitivity analysis,parameter optimisation,and forecast for 2050[J]. Journal of Cleaner Production, 2021, 279:123674.
doi: 10.1016/j.jclepro.2020.123674 url: https://linkinghub.elsevier.com/retrieve/pii/S0959652620337197
[21] 何林倩, 刘倩, 王德彩, 等. 基于数字土壤制图技术的土壤有机碳储量估算[J]. 应用生态学报, 2021, 32(2):591-600.
doi: 10.13287/j.1001-9332.202102.014
[21] He L Q, Liu Q, Wang D C, et al. Estimation of soil organic carbon storage based on digital soil mapping technique[J]. Chinese Journal of Applied Ecology, 2021, 32(2):591-600.
[22] 张甘霖, 朱阿兴, 史舟, 等. 土壤地理学的进展与展望[J]. 地理科学进展, 2018, 37(1):57-65.
doi: 10.18306/dlkxjz.2018.01.007
[22] Zhang G L, Zhu A X, Shi Z, et al. Progress and future prospect of soil geography[J]. Progress in Geography, 2018, 37(1):57-65.
doi: 10.18306/dlkxjz.2018.01.007
[23] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[24] 任丽, 杨联安, 王辉, 等. 基于随机森林的苹果区土壤有机质空间预测[J]. 干旱区资源与环境, 2018, 32(8):141-146.
[24] Ren L, Yang L A, Wang H, et al. Spatial prediction of soil organic matter in apple region based on random forest[J]. Journal of Arid Land Resources and Environment, 2018, 32(8):141-146.
[25] O’Brien R, Ishwaran H. A random forests quantile classifier for class imbalanced data[J]. Pattern Recognition, 2019, 90:232-249.
doi: 10.1016/j.patcog.2019.01.036 pmid: 30765897
[26] Pouladi N, Møller A B, Tabatabai S, et al. Mapping soil organic matter contents at field level with Cubist,random forest and Kriging[J]. Geoderma, 2019, 342:85-92.
doi: 10.1016/j.geoderma.2019.02.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0016706118319621
[27] Vaysse K, Lagacherie P. Using quantile regression forest to estimate uncertainty of digital soil mapping products[J]. Geoderma, 2017, 291:55-64.
doi: 10.1016/j.geoderma.2016.12.017 url: https://linkinghub.elsevier.com/retrieve/pii/S001670611631059X
[28] Guo P T, Li M F, Luo W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale:An application of random forest plus residuals Kriging approach[J]. Geoderma, 2015, 237:49-59.
[29] da Silva Chagas C, de Carvalhe W Jr, Bhering S B, et al. Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions[J]. Catena, 2016, 139:232-240.
doi: 10.1016/j.catena.2016.01.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0341816216300017
[30] Camera C, Zomeni Z, Noller J S, et al. A high resolution map of soil types and physical properties for Cyprus:A digital soil mapping optimization[J]. Geoderma, 2017, 285:35-49.
doi: 10.1016/j.geoderma.2016.09.019 url: https://linkinghub.elsevier.com/retrieve/pii/S0016706116304864
[31] Amirian-Chakan A, Minasny B, Taghizadeh-Mehrjardi R, et al. Some practical aspects of predicting texture data in digital soil mapping[J]. Soil and Tillage Research, 2019, 194:104289.
doi: 10.1016/j.still.2019.06.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0167198718314302
[32] Chen S C, Liang Z Z, Webster R, et al. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution[J]. Science of the Total Environment, 2019, 655:273-283.
doi: 10.1016/j.scitotenv.2018.11.230 url: https://linkinghub.elsevier.com/retrieve/pii/S0048969718345868
[33] 卢宏亮, 赵明松, 刘斌寅, 等. 基于随机森林模型的安徽省土壤属性空间分布预测[J]. 土壤, 2019, 51(3):602-608.
[33] Lu H L, Zhao M S, Liu B Y, et al. Spatial prediction of soil properties based on random forest model in Anhui Province[J]. Soils, 2019, 51(3):602-608.
[34] 王世航, 卢宏亮, 赵明松, 等. 基于不同特征挖掘方法结合广义提升回归模型估测安徽省土壤pH[J]. 应用生态学报, 2020, 31(10):3509-3517.
doi: 10.13287/j.1001-9332.202010.018
[34] Wang S H, Lu H L, Zhao M S, et al. Assessing soil pH in Anhui Province based on different features mining methods combined with generalized boosted regression models[J]. Chinese Journal of Applied Ecology, 2020, 31(10):3509-3517.
[35] 周宏冀. 江西省耕地土壤pH空间变异与管理分区研究[D]. 南昌: 江西财经大学, 2019.
[35] Zhou H J. Study on spatial variation and management zoning of soil pH value of cultivated land in Jiangxi Province[D]. Nanchang: Jiangxi University of Finance and Economics, 2019.
[36] 齐雁冰, 王茵茵, 陈洋, 等. 基于遥感与随机森林算法的陕西省土壤有机质空间预测[J]. 自然资源学报, 2017, 32(6):1074-1086.
doi: 10.11849/zrzyxb.20160623
[36] Qi Y B, Wang Y Y, Chen Y, et al. Soil organic matter prediction based on remote sensing data and random forest model in Shaanxi Province[J]. Journal of Natural Resources, 2017, 32(6):1074-1086.
[37] 袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究——以福建亚热带复杂地貌区为例[J]. 土壤学报, 2021, 58(4):887-899.
[37] Yuan Y Q, Chen H Y, Zhang L M, et al. Prediction of spatial distribution of soil organic carbon in farmland based on multi-variables and random forest algorithm: A case study of a subtropical complex geomorphic region in Fujian as an example[J]. Acta Pedologica Sinica, 2021, 58(4):887-899.
[38] 王洪, 曹婧, 毋俊华, 等. 近40年来陕西省耕层土壤pH的时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(6):1117-1126.
[38] Wang H, Cao J, Wu J H, et al. Spatial and temporal variability in soil pH of Shaanxi Province over the last 40 years[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6):1117-1126.
[39] 戴万宏, 黄耀, 武丽, 等. 中国地带性土壤有机质含量与酸碱度的关系[J]. 土壤学报, 2009, 46(5):851-860.
[39] Dai W H, Huang Y, Wu L, et al. Relationships between soil organic matter content(SOM) and pH in topsoil of zonal soils in China[J]. Acta Pedologica Sinica, 2009, 46(5):851-860.
[40] 许亚琪. 土壤阳离子交换量的分析结果研究[J]. 干旱环境监测, 2018, 32(1):19-23.
[40] Xu Y Q. Study on the analytical results of soil cationic exchange capacity[J]. Arid Environmental Monitoring, 2018, 32(1):19-23.
[41] 康婷, 周春火, 魏宗强, 等. 江西省土壤阳离子交换量区域分布特征及其影响因素[J]. 中国农学通报, 2021, 37(14):66-71.
doi: 10.11924/j.issn.1000-6850.casb2020-0486
[41] Kang T, Zhou C H, Wei Z Q, et al. Regional distribution characteristics and influencing factors of soil cation exchange capacity in Jiangxi[J]. Chinese Agricultural Science Bulletin, 2021, 37(14):66-71.
doi: 10.11924/j.issn.1000-6850.casb2020-0486
[42] 王晖, 邢小军, 许自成. 攀西烟区紫色土pH值与土壤养分的相关分析[J]. 中国土壤与肥料, 2007(6):19-22.
[42] Wang H, Xing X J, Xu Z C. Relationship between pH value and available nutrients of purple soil in panxi tobacco-growing areas[J]. Soil and Fertilizer Sciences in China, 2007(6):19-22.
[43] 朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8):1508-1517.
[43] Zhu D M, Liu Y, Zhang L, et al. Effects of pH,Eh,Fe,and flooded time on available-Cd content after flooding of different kinds of soil[J]. Journal of Agro-Environment Science, 2017, 36(8):1508-1517.
[44] Ding C, Du S, Ma Y, et al. Changes in the pH of paddy soils after flooding and drainage:Modeling and validation[J]. Geoderma, 2019, 337:511-513.
doi: 10.1016/j.geoderma.2018.10.012 url: https://linkinghub.elsevier.com/retrieve/pii/S0016706118312333
[1] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[2] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[3] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[4] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[5] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[6] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[7] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[8] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[9] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[10] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
[11] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[12] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[13] WANG Xuejie, SHI Guoping, ZHOU Ziqin, ZHEN Yang. Revision of solar radiation product ERA5 based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2022, 34(2): 105-111.
[14] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[15] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech