Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (2) : 97-104     DOI: 10.6046/zrzyyg.2022158
|
Mask R-CNN-based intelligent identification of sparse woods from remote sensing images
DIAO Mingguang1(), LIU Yong1, GUO Ningbo1, LI Wenji2, JIANG Jikang1, WANG Yunxiao1
1. School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
Download: PDF(5348 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

There are only a few low-accuracy methods available for the feature extraction of sparse woods from remote sensing images. Moreover, there is a lack of datasets for intelligent identification. This study proposed a method for intelligent information identification of sparse woods from remote sensing images. First, a dataset was created using QGIS and Python separately to provide data support for model training. Then, feature maps were generated through feature extraction, and then regions of interest (ROIs) were extracted from the feature maps. Subsequently, these ROIs were filtered through pooling operations (ROI align) to reduce the memory consumption caused by too many ROIs in the images. Experiments show that the method proposed in this study can create datasets quickly and facilitate the identification of sparse woods from remote sensing images. Moreover, the Mask R-CNN-based intelligent identification has a target detection mean average precision (MAP) of up to 0.92.

Keywords remote sensing image      sparse woods      deep learning      Mask R-CNN      QGIS     
ZTFLH:  TP751  
Issue Date: 07 July 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mingguang DIAO
Yong LIU
Ningbo GUO
Wenji LI
Jikang JIANG
Yunxiao WANG
Cite this article:   
Mingguang DIAO,Yong LIU,Ningbo GUO, et al. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022158     OR     https://www.gtzyyg.com/EN/Y2023/V35/I2/97
Fig.1  Remote sensing image sparse woods dataset generation process
键名 说明
version LabelMe的版本号 可自动获取
flags 标志 可为空
shape_label 标签名,通常为类别名+编号 获取矢量信息中的类别,同一类别累加计数
shape_line_color 线条颜色 可为空
shape_fill_color 填充颜色 可为空
shape_points 掩模各个顶点的相对坐标 计算图斑上各点与矩形框左上角的坐标差
shape_type 掩模形状类型 point(点)、line(线)、polygon(多边形)
lineColor 线条颜色 可为空
fillColor 填充颜色 可为空
imagePath 原图路径 裁剪后影像的路径
imageData 64位值 图像转换
imageHeight 原始图像的高度 图像信息中获取
imageWidth 原始图像的宽度 图像信息中获取
Tab.1  Mapping relationship of JSON data and vector data
数据集生成方法 数据源 数据量/
耗时/
h
人工制作方法 自然资源林地遥感影像 9 156 1 008
矿山遥感监测实例分割数据集自动生成方法 自然资源林地遥感影像 9 156 96
遥感影像疏林地数据集自动生成方法 自然资源林地遥感影像 9 156 7.5
Tab.2  Performance comparison of different dataset generation methods
Fig.2  Framework for intelligent recognition model of remote sensing image sparse woods
Fig.3  ResNet-FPN network architecture
Fig.4  Bilinear interpolation calculation process
Fig.5  Conversion effect of remote sensing image sparse woods intelligent recognition model result
Fig.6  Framework of intelligent identification method for sparse woods from remote sensing image
Fig.7  Remote sensing data local image and vector data of sparse woods
Fig.8  Loss function graph
Fig.9  Experimental recognition results
Fig.10  Experimental verification set accurate recall curve
Fig.11  Validation set experimental results
[1] Everingham M, Eslami S M A, Van Gool L, et al. The pascal visual object classes challenge:A retrospective[J]. International Journal of Computer Vision, 2015, 111(1):98-136.
doi: 10.1007/s11263-014-0733-5 url: http://link.springer.com/10.1007/s11263-014-0733-5
[2] Lin T, Maire M, Belongie S, et al. Microsoft COCO:Common objects in context[J]. Lecture Notes in Computer Science, 2014, 8693(1):740-755.
[3] Alex K, Ilya S, Geoffrey E H. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
doi: 10.1145/3065386 url: https://dl.acm.org/doi/10.1145/3065386
[4] Xia G S, Bai X, Ding J, et al. DOTA:A large-scale dataset for object detection in aerial images[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018:3974-3983.
[5] 刘立, 彭刚. 高分辨率遥感影像线状地物提取方法研究[J]. 智能城市, 2021, 7(6):63-64.
[5] Liu L, Peng G. Research on the extraction method of line features from high-resolution remote sensing images[J]. Intelligent City, 2021, 7(6):63-64.
[6] 林娜, 陈宏, 李志鹏, 等. 基于GF-1号影像的南方水稻种植信息提取[J]. 地理空间信息, 2021, 19(3):60-63.
[6] Lin N, Chen H, Li Z P, et al. Information extraction of southern rice planting based on GF-1 image[J]. Geospatial Information, 2021, 19(3):60-63.
[7] 张冠宏, 王新军, 徐晓龙, 等. 基于面向对象的无人机遥感影像荒漠植被分类[J]. 中国农业科技导报, 2021, 23(5):69-77.
[7] Zhang G H, Wang X J, Xu X L, et al. Desert vegetation classification based on object-oriented UAV remote sensing images[J]. Journal of Agricultural Science and Technology, 2021, 23(5):69-77.
doi: 10.13304/j.nykjdb.2020.0851
[8] 刘芸, 李雪, 廖瑶, 等. 基于面向对象分类法的贵州烤烟种植区域提取——以烤烟成熟期为例[J]. 贵州科学, 2021, 39(2):82-86.
[8] Liu Y, Li X, Liao Y, et al. Extraction of roasted tobacco growing areas in Guizhou based on object-oriented classification method:Taking roasted tobacco maturity period as an example[J]. Guizhou Science, 2021, 39(2):82-86.
[9] Ke L, Gang W, Gong C, et al. Object detection in optical remote sensing images:A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159:296-307.
doi: 10.1016/j.isprsjprs.2019.11.023 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271619302825
[10] 杜敬. 基于深度学习的无人机遥感影像水体识别[J]. 江西科学, 2017, 35(1):158-161,170.
[10] Du J. Deep learning based UAV remote sensing image water body identification[J]. Jiangxi Science, 2017, 35(1):158-161,170.
[11] 范荣双, 陈洋, 徐启恒, 等. 基于深度学习的高分辨率遥感影像建筑物提取方法[J]. 测绘学报, 2019, 48(1):38-45.
[11] Fan R S, Chen Y, Xu Q H, et al. A high-resolution remote sensing image building extraction method based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):38-45.
[12] 刁明光, 于晨, 李文吉, 等. 矿山遥感监测实例分割数据集的自动生成方法[J]. 中国科技论文, 2021, 16(3):329-335.
[12] Diao M G, Yu C, Li W J, et al. Automatic generation method of instance segmentation data set in mine remote sensing monitoring[J]. China Sciencepaper, 2021, 16(3):329-335.
[13] Menapace A, Pisaturo G R, De Luca A, et al. EPANET in QGIS framework:The QEPANET plugin[J]. Journal of Water Supply:Research and Technology-Aqua, 2020, 69(1):1-5.
doi: 10.2166/aqua.2019.087 url: https://iwaponline.com/aqua/article/69/1/1/70433/EPANET-in-QGIS-framework-the-QEPANET-plugin
[14] Zhang W W, Wang K F, Wang Y T, et al. A loss-balanced multi-task model for simultaneous detection and segmentation[J]. Neurocomputing, 2021, 428:65-78.
doi: 10.1016/j.neucom.2020.11.024 url: https://linkinghub.elsevier.com/retrieve/pii/S0925231220318105
[15] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):386-397.
doi: 10.1109/TPAMI.2018.2844175 pmid: 29994331
[16] Huang Y J, Xu H X. Fully convolutional network with attention modules for semantic segmentation[J]. Signal,Image and Video Processing, 2021, 15(5):1031-1039.
doi: 10.1007/s11760-020-01828-8
[17] Miao J, Xu S W, Zou B X, et al. ResNet based on feature-inspired gating strategy[J]. Multimedia Tools and Applications, 2022, 81(4):19283-19300.
doi: 10.1007/s11042-021-10802-6
[18] Bai T, Pang Y, Luo J S, et al. An optimized faster R-CNN method based on DRNet and RoI align for building detection in remote sensing images[J]. Remote Sensing, 2020, 12(5):762.
doi: 10.3390/rs12050762 url: https://www.mdpi.com/2072-4292/12/5/762
[19] 孙禧勇, 许玮, 姜德才, 等. 基于遥感的雄安新区地表水时序变化与区域规划研究[J]. 地球物理学进展, 2021, 36(4):1443-1455.
[19] Sun X Y, Xu W, Jiang D C, et al. Research on time series changing trend of surface water and regional planning in Xiong’an New Area based on remote sensing[J]. Progress in Geophysics, 2021, 36(4):1443-1455.
[1] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[2] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[5] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[6] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[7] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[8] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[9] ZHANG Ke, ZHANG Gengsheng, WANG Ning, WEN Jing, LI Yu, YANG Jun. A forecasting method for water table depths in areas with power transmission lines based on remote sensing and deep learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 213-221.
[10] HU Jianwen, WANG Zeping, HU Pei. A review of pansharpening methods based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(1): 1-14.
[11] ZHAO Linghu, YUAN Xiping, GAN Shu, HU Lin, QIU Mingyu. An information extraction model of roads from high-resolution remote sensing images based on improved Deeplabv3+[J]. Remote Sensing for Natural Resources, 2023, 35(1): 107-114.
[12] LYU Yanan, ZHU Hong, MENG Jian, CUI Chengling, SONG Qiqi. A review and adaptability study of deep learning models for vehicle detection based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 22-32.
[13] TAN Hai, ZHANG Rongjun, FAN Wenfeng, ZHANG Yifang, XU Hang. Classification and detection of radiation anomalies in Chinese optical satellite images by integrating multi-scale features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 97-104.
[14] SU Wei, LIN Yangyang, YUE Wen, CHEN Yingbiao. Identification of mariculture areas in Guangdong Province and remote sensing monitoring of their spatial and temporal changes based on the U-Net convolutional neural network[J]. Remote Sensing for Natural Resources, 2022, 34(4): 33-41.
[15] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech