Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 137-144     DOI: 10.6046/gtzyyg.2020.04.18
|
Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model
YANG Lijuan()
Department of Surveying and Mapping Engineering, Minjiang University, Fuzhou 350118, China
Download: PDF(4529 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The aerosol optical depth (AOD) derived via dark-target algorithm has been widely used as an effective tool for estimating PM2.5concentrations. However, this algorithm cannot effectively retrieve AOD on the bright surface. Therefore, the authors used a random forest model incorporating meteorological parameters to predict the missing AOD values, and then employed a second-stage random forest model combining the retrieved AOD with meteorological parameters, vegetation cover and road density to estimate the PM2.5concentrations in two districts of eastern coastal zone of China, i.e., YRD and PRD. The result shows that the proposed model performed very well, achieving R2 of 0.94 for AOD predictions and MODIS AOD and an overall R2 of 0.97 with RMSE being only 5.57 μg/m 3 between the estimated and observed PM2.5 concentrations. The spatial distribution of PM2.5concentrations suggests that the high values are mainly located in Jiangsu Province with low elevation (≥40 μg/m3). The results indicate that the proposed two-stage random forest model incorporated with satellite AOD and other variables could be effectively used for estimating the ground-level PM2.5 concentrations.

Keywords random forest model      PM2.5 distribution      AOD retrieval      YRD      PRD     
:  TP79  
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lijuan YANG
Cite this article:   
Lijuan YANG. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.18     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/137
Fig.1  The study area
变量 最小值 最大值 均值 标准差
PM2.5 /(μg·m-3) 1.00 377.00 41.53 32.00
AOD 0.01 2.20 0.26 0.18
PBLH/m 63.38 2 227.65 940.37 941.88
PS/hPa 918.60 1 034.00 1 003.20 1 007.00
RH/% 13.50 100.00 62.30 64.30
T2 m/K 269.80 310.20 294.90 296.00
T10 m/K 269.40 309.30 294.20 295.30
Ts/K 271.90 320.80 297.70 298.90
U10 m/(m·s-1) -11.44 9.04 -0.79 -0.95
U-component/(m·s-1) -15.35 14.36 -1.07 -1.38
V10 m/(m·s-1) -17.95 11.59 -0.23 -0.18
V-component/(m·s-1) -24.14 18.07 -0.40 -0.42
vegetationcover 0.00 0.87 0.35 0.33
roaddensity/(km·km-2) 0.11 2.31 1.13 1.05
Tab.1  Statistics of parameters for model fitting
Fig.2  Importance of each parameter in PM2.5 variability
Fig.3  Estimated results of random forest model
Fig.4  Estimated results of random forest model for four seasons and twelve months
Fig.5  CV results of random forest model
时间 R2 RMSE/(μg·m-3)
全年 0.97 5.73
春季 0.97 5.99
夏季 0.95 3.99
秋季 0.96 4.62
冬季 0.96 7.66
Tab.2  CV results of random forest model for the entire period and four seasons
Fig.6  Spatial distribution of annual PM2.5 concentrations in YRD and PRD
Fig.7  Spatial distribution of seasonal PM2.5 concentrations in YRD and PRD
[1] Ma J Z, Chen Y, Wang W, et al. Strong air pollution causes widespread haze-clouds over China[J]. Journal of Geophysical Research-Atmospheres, 2010,115(D18204).
[2] Deng J J, Du K, Wang K, et al. Long-term atmospheric visibility trend in Southeast China,1973—2010[J]. Atmospheric Environment, 2012,59:11-21.
[3] Fang X, Zou B, Liu X P, et al. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling[J]. Remote Sensing of Environment, 2016,186:152-163.
[4] 陈辉, 厉青, 王中挺, 等. MERSI和MODIS卫星监测京津冀及周边地区PM2.5浓度[J]. 遥感学报, 2018,22(5):822-832.
[4] Chen H, Li Q, Wang Z T, et al. Utilization of MERSI and MODIS data to monitor PM2.5 concentrations in Beijing-Tianjin-Hebei and its surrounding areas[J]. Journal of Remote Sensing, 2018,22(5):822-832.
[5] Zhao P S, Zhang X L, Xu X F, et al. Long-term visibility trends and characteristics in the region of Beijing,Tianjin,and Hebei,China[J]. Atmospheric Research, 2011,101(3):711-718.
[6] Cao J J, Shen Z X, Chow J C, et al. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities[J]. Journal of the Air and Waste Management Association, 2012,62(10):1214-1226.
pmid: 23155868 url: https://www.ncbi.nlm.nih.gov/pubmed/23155868
[7] Wang S, Li G G, Gong Z Y, et al. Spatial distribution,seasonal variation and regionalization of PM2.5 concentrations in China[J]. Science China-Chemistry, 2015,58(9):1435-1443.
[8] Xu H, Guang J, Xue Y, et al. A consistent aerosol optical depth (AOD) dataset over mainland China by integration of several AOD products[J]. Atmospheric Environment, 2015,114:48-56.
[9] van Donkelaar A, Martin R V, Park R J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing[J]. Journal of Geophysical Research-Atmospheres, 2006,111(D21).
[10] Fan X H, Chen H B, Lin L F, et al. Retrieval of aerosol optical properties over the Beijing area using POLDER/PARASOL satellite polarization measurements[J]. Advances in Atmospheric Sciences, 2009,26(6):1099-1107.
doi: 10.1007/s00376-009-8103-x url: http://www.springerlink.com/content/9w31441h8n218414/
[11] Livingston J M, Redemann J, Shinozuka Y, et al. Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008[J]. Atmospheric Chemistry and Physics, 2014,14(4):2015-2038.
[12] 贾松林, 苏林, 陶金花, 等. 卫星遥感监测近地表细颗粒物多元回归方法研究[J]. 中国环境科学, 2014(3):565-573.
[12] Jia S L, Su L, Tao J H, et al. A study of multiple regression method for estimating concentration of fine particulate matter using satellite remote sensing[J]. China Environmental Science, 2014(3):565-573.
[13] Ma Z W, Liu Y, Zhao Q Y, et al. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta region of China using improved linear mixed effects model[J]. Atmospheric Environment, 2016,133:156-164.
[14] Gupta P, Christopher S A. Particulate matter air quality assessment using integrated surface,satellite,and meteorological products:2.A neural network approach[J]. Journal of Geophysical Research-Atmospheres, 2009,114.
doi: 10.1029/2008JE003285 pmid: 27630378 url: https://www.ncbi.nlm.nih.gov/pubmed/27630378
[15] Wang Z F, Chen L F, Tao J H, et al. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sensing of Environment, 2010,114(1):50-63.
[16] Yang X F, Zheng Y X, Geng G N, et al. Development of PM2.5 and NO2 models in a LUR framework incorporating satellite remote sensing and air quality model data in Pearl River Delta region,China[J]. Environmental Pollution, 2017,226:143-153.
pmid: 28419921 url: https://www.ncbi.nlm.nih.gov/pubmed/28419921
[17] 阳海鸥, 陈文波, 梁照凤. LUR模型模拟的南昌市PM2.5浓度与土地利用类型的关系[J]. 农业工程学报, 2017,33(6):232-239.
[17] Yang H O, Chen W B, Liang Z F. Relationship of PM2.5 concentration and land use type in Nanchang City based on LUR simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(6):232-239.
[18] Zhang T H, Gong W, Wang W, et al. Ground level PM2.5 estimates over China using satellite-based geographically weighted regression (GWR) models are improved by including NO2 and enhanced vegetation index (EVI)[J]. International Journal of Environmental Research and Public Health, 2016,13(12):1215.
doi: 10.3390/ijerph13121215 url: http://www.mdpi.com/1660-4601/13/12/1215
[19] Xiao L, Lang Y, Christakos G. High-resolution spatiotemporal mapping of PM2.5 concentrations at mainland China using a combined BME-GWR technique[J]. Atmospheric Environment, 2018,173:295-305.
[20] Bai Y, Wu L X, Qin K, et al. A Geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD[J]. Remote Sensing, 2016,8(3):262.
[21] He Q Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 2018,206:72-83.
[22] Lee H J, Liu Y, Coull B A, et al. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations[J]. Atmospheric Chemistry and Physics, 2011,11(15):7991-8002.
[23] 杨立娟, 徐涵秋, 金致凡. MODIS卫星遥感估计福州地区近地面PM2.5浓度[J]. 遥感学报, 2018,22(1):64-75.
[23] Yang L J, Xu H Q, Jin Z F. Estimation of ground-level PM2.5 concentrations using MODIS satellite data in Fuzhou,China[J]. Journal of Remote Sensing, 2018,22(1):64-75.
[24] Yang L J, Xu H Q, Jin Z F. Estimating ground-level PM2.5 over a coastal region of China using satellite AOD and a combined model[J]. Journal of Cleaner Production, 2019,227:472-482.
[25] Sorek H M, Kloog I, Koutrakis P, et al. Assessment of PM2.5 concentrations over bright surfaces using MODIS satellite observations[J]. Remote Sensing of Environment, 2015,163:180-185.
doi: 10.1016/j.rse.2015.03.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715001108
[26] Ma Z W, Hu X F, Huang L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science and Technology, 2014,48(13):7436-7444.
pmid: 24901806 url: https://www.ncbi.nlm.nih.gov/pubmed/24901806
[27] Mehdipour V, Stevenson D S, Memarianfard M, et al. Comparing different methods for statistical modeling of particulate matter in Tehran,Iran[J]. Air Quality Atmosphere and Health, 2018,11(10):1155-1165.
[28] Hu X F, Belle J H, Meng X, et al. Estimating PM2.5 concentrations in the conterminous united states using the random forest approach[J]. Environmental Science and Technology, 2017,51(12):6936-6944.
pmid: 28534414 url: https://www.ncbi.nlm.nih.gov/pubmed/28534414
[29] Brokamp C, Jandarov R, Hossain M, et al. Predicting daily urban fine particulate matter concentrations using a random forest model[J]. Environmental Science and Technology, 2018,52(7):4173-4179.
doi: 10.1021/acs.est.7b05381 pmid: 29537833 url: https://www.ncbi.nlm.nih.gov/pubmed/29537833
[30] Song W Z, Jia H F, Huang J F, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014,154:1-7.
[31] Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
[32] Khosravi I, Alavipanah S K. A random forest-based framework for crop mapping using temporal,spectral,textural and polarimetric observations[J]. International Journal of Remote Sensing, 2019,40(18):7221-7251.
[33] Huang K Y, Xiao Q Y, Meng X, et al. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain[J]. Environmental Pollution, 2018,242:675-683.
doi: 10.1016/j.envpol.2018.07.016 pmid: 30025341 url: https://www.ncbi.nlm.nih.gov/pubmed/30025341
[34] 谢志英, 刘浩, 唐新明. 北京市MODIS气溶胶光学厚度与PM10质量浓度的相关性分析[J]. 环境科学学报, 2015(10):3292-3299.
[34] Xie Z Y, Liu H, Tang X M. Correlation analysis between MODIS aerosol optical depth and PM10 concentration over Beijing[J]. Acta Scientiae Circumstantiae, 2015(10):3292-3299.
[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[14] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech