Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 54-61     DOI: 10.6046/zrzyyg.2023231
|
Information extraction of coal gangue mountain based on random forest algorithm
FAN Yinglin1,2(), DU Song1,2(), ZHAO Yue1,2, QIU Jingzhi3, DU Xiaochuan4, ZHANG Yufeng1,2, DING Yan1,2, SONG Sitong1,2, CHE Qiaohui1,2
1. General Prospecting Institute of China National Administration of Coal Geology, Institute of Geological Deep Well Injection and Stroage, Beijing 100039, China
2. China National Administration of Coal Geology, Beijing 100038, China
3. China Mining Association, Beijing 100029, China
4. Suzhou Industry Park Mapping Co., Ltd., Suzhou 215000, China
Download: PDF(5585 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Coal gangue mountains are key areas for the ecological restoration of coal mines. Understanding their geographical distribution holds great significance for regional environmental management. This study focused on part of Xinluo District, Longyan City, Fujian Province. Using GF-2 remote sensing images and data from the ASTER GDEM digital elevation model, this study extracted spectral, texture, and topographic features and then optimized these features using the sequential forward selection method. Subsequently, this study developed a model for surface feature classification using a random forest algorithm. Using this model, this study categorized surface features by integrating multi-source data and comprehensive feature combinations and then achieved the identification and information extraction of coal gangue mountains. The results indicate that the classification accuracy did not necessarily increase with the number of features. After feature selection, the number of features was reduced from 17 to 9, and the overall extraction accuracy of coal gangue mountains reached 94.07%, with a Kappa coefficient of 0.819. Factors playing an important role in the identification and information extraction of coal gangue deposit areas included elevation, slope, aspect, multi-spectral bands B1, B2, and B4 in the spectral characteristics, normalized vegetation index, and grayscale value of images. In contrast, texture features merely improved the accuracy of surface feature types with distinct textural variations, while producing limited effects on the information extraction of coal gangue mountains. For the study area, only the mean texture feature produced significant effects on the information extraction accuracy of coal gangue mountains. The combination of random forest and feature optimization algorithm can effectively enhance the information extraction accuracy of coal gangue mountain, efficiently integrate multi-source feature data, and accelerate model calculation, serving as a practically feasible method for the information extraction of coal gangue mountains.

Keywords remote sensing      GF-2 image      random forest classification      coal gangue      feature optimization     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yinglin FAN
Song DU
Yue ZHAO
Jingzhi QIU
Xiaochuan DU
Yufeng ZHANG
Yan DING
Sitong SONG
Qiaohui CHE
Cite this article:   
Yinglin FAN,Song DU,Yue ZHAO, et al. Information extraction of coal gangue mountain based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 54-61.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023231     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/54
Fig.1  Image of study area
Fig.2  Ground object samples
Fig.3  Schematic diagram of spectral feature extraction results
Fig.4  Schematic diagram of texture feature extraction results
Fig.5  Schematic diagram of terrain feature extraction results
Fig.6  Feature importance evaluation plot
Fig.7  Relationship between test set accuracy and number of features
Fig.8  Extraction result of coal gangue accumulation area
地物类别 正确分类点
总和/像元
重度与轻度
煤矸石错分
点/像元
验证点总
和/像元
生产者精
度/%
用户精度/% 错分误差/% 漏分误差/% 煤矸石总体
分类精度/%
Kappa系数
煤矸石重度堆积区 71 3 78 91.03 97.26 2.74 6.41 94.07 0.819
煤矸石轻度堆积区 52 1 57 91.23 77.61 22.39 8.77
煤矸石堆积区 127 4 135 94.07 90.71 9.29 5.93
Tab.1  Classification accuracy evaluation
[1] 李廉洁, 樊书祥, 王学文, 等. 高光谱成像的煤与矸石分类[J]. 光谱学与光谱分析, 2022, 42(4):1250-1256.
[1] Li L J, Fan S X, Wang X W, et al. Classification method of coal and gangue based on hyperspectral imaging technology[J]. Spectro-scopy and Spectral Analysis, 2022, 42(4):1250-1256.
[2] 李嘉琪, 赵艳玲, 任河, 等. 自燃煤矸石山的遥感识别——基于Landsat8热红外波段地表温度反演数据[J]. 金属矿山, 2022(3):205-212.
[2] Li J Q, Zhao Y L, Ren H, et al. Remote sensing recognition of spontaneous combustion gangue dump:Based on Landsat8 thermal infrared band land surface temperature inversion data[J]. Metal Mine, 2022(3):205-212.
[3] 侯飞, 胡召玲. 基于多尺度分割的煤矿区典型地物遥感信息提取[J]. 测绘通报, 2012(1):22-25.
[3] Hou F, Hu Z L. Remote sensing information extraction of typical surface objects in a coal mining area based on multiple-scale segmentation[J]. Bulletin of Surveying and Mapping, 2012(1):22-25.
[4] 徐良骥, 黄璨, 章如芹, 等. 煤矸石充填复垦地理化特性与重金属分布特征[J]. 农业工程学报, 2014, 30(5):211-219.
[4] Xu L J, Huang C, Zhang R Q, et al. Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5):211-219.
[5] 王小云, 牛艳霞. 煤矸石研究综述: 分类、危害及综合利用[J]. 化工矿物与加工, 2023, 52(11):18-25.
[5] Wang X Y, Niu Y X. Review of research on coal gangue with its classification,hazards and comprehensive utilization[J]. Industrial Minerals and Processing, 2023, 52(11):18-25.
[6] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8):13-17.
[6] Chang J W, Du G J, Du J L, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry, 2022(8):13-17.
[7] 王红美. 煤矸石综合利用现存问题分析与解决对策研究[J]. 资源节约与环保, 2022(1):115-117.
[7] Wang H M. Analysis on existing problems and countermeasures of comprehensive utilization of coal gangue[J]. Resources Economi-zation and Environmental Protection, 2022(1):115-117.
[8] 荆青青, 张志, 王旭. 基于ASTER遥感影像的煤矸石分布信息提取方法[J]. 煤炭科学技术, 2008, 36(5):93-96.
[8] Jing Q Q, Zhang Z, Wang X. Collecting method of coal refuse distribution information based on ASTER remote sensing images[J]. Coal Science and Technology, 2008, 36(5):93-96.
[9] Nádudvari Á. Thermal mapping of self-heating zones on coal waste dumps in Upper Silesia (Poland): A case study[J]. International Journal of Coal Geology, 2014,128/129:47-54.
[10] 周涛, 胡振琪, 阮梦颖, 等. 基于无人机遥感的煤矸石山植被分类[J]. 煤炭科学技术, 2023, 51(5):245-259.
[10] Zhou T, Hu Z Q, Ruan M Y, et al. Classification of coal gangue pile vegetation based on UAV remote sensing[J]. Coal Science and Technology, 2023, 51(5):245-259.
[11] Bengio Y, Courville A, Vincent P. Representation learning:A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1798-1828.
[12] 王书玉, 张羽威, 于振华. 基于随机森林的洪河湿地遥感影像分类研究[J]. 测绘与空间地理信息, 2014, 37(4):83-85,93.
[12] Wang S Y, Zhang Y W, Yu Z H. Classification of Honghe wetland remote sensing image based on random forests[J]. Geomatics & Spatial Information Technology, 2014, 37(4):83-85,93.
[13] 龙岩市人民政府. 自然地理[EB/OL].(2023-03-16)http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm.
url: http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm
[13] Longyan City People’s Government. Physical geography[EB/OL].(2023-03-16)http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm.
url: http://www.longyan.gov.cn/sqk/lygk/zrhj/201809/t20180920_1380306.htm
[14] 何仲秋. 龙岩市现已探明煤炭资源状况及远景资源区预测[C]// 2007年赣皖湘苏闽五省煤炭学会联合学术交流会论文集. 厦门,2007:363-365.
[14] He Z Q. The situation of coal resources and the prediction of prospective resource areas have been proved in Longyan City[C]// Proceedings of the 2007 Joint Academic Exchange meeting of Coal societies of Jiangxi,Anhui,Hunan,Jiangsu and Fujian Provinces. Editorial Department of Energy and Environment,2007:363-365.
[15] 福建日报. 龙岩新罗区: 煤矸石变废为宝煤台披上“新绿装”[EB/OL].(2021-08-18).http://fjnews.fjsen.com/2021-08/18/content_30813574.htm.
url: http://fjnews.fjsen.com/2021-08/18/content_30813574.htm
[15] Fujian Daily. Longyan Xinluo District:Coal gangue waste into trea-sure coal platform covered with "new green"[EB/OL].(2021-08-18).http://fjnews.fjsen.com/2021-08/18/content_30813574.htm.
url: http://fjnews.fjsen.com/2021-08/18/content_30813574.htm
[16] 帅爽, 张志, 张天, 等. 结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类[J]. 农业工程学报, 2021, 37(21):199-207.
[16] Shuai S, Zhang Z, Zhang T, et al. Method for classifying vegetation types in arid areas combining spectral and textural features of ZY-1 02D[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21):199-207.
[17] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973, SMC-3(6):610-621.
[18] 张炳华, 张镱锂, 谷昌军, 等. 基于随机森林与特征选择的藏东南土地覆被分类方法及精度评价[J]. 地理科学, 2023, 43(3):388-397.
doi: 10.13249/j.cnki.sgs.2023.03.002
[18] Zhang B H, Zhang Y L, Gu C J, et al. Land cover classification based on random forest and feature optimism in the Southeast Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2023, 43(3):388-397.
doi: 10.13249/j.cnki.sgs.2023.03.002
[19] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3):32-38.
[19] Fang K N, Wu J B, Zhu J P, et al. A review of technologies on random forests[J]. Statistics and Information Forum, 2011, 26(3):32-38.
[20] 柳明星, 刘建红, 马敏飞, 等. 基于GF-2 PMS影像和随机森林的甘肃临夏花椒树种植监测[J]. 自然资源遥感, 2022, 34(1):218-229.
[20] Liu M X, Liu J H, Ma M F, et al. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm:A case study of Linxia,Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1):218-229.
[21] 杜晓川, 娄德波, 徐林刚, 等. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4):53-60.doi:10.6046/zrzyyg.2022280.
[21] Du X C, Lou D B, Xu L G, et al. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4):53-60.doi:10.6046/zrzyyg.2022280.
[22] 李兰晖, 黄聪聪, 张镱锂, 等. 基于地理加权随机森林的青藏地区放牧强度时空格局模拟[J]. 地理科学, 2023, 43(3):398-410.
doi: 10.13249/j.cnki.sgs.2023.03.003
[22] Li L H, Huang C C, Zhang Y L, et al. Mapping the multi-temporal grazing intensity on the Qinghai-Tibet Plateau using geographically weighted random forest[J]. Scientia Geographica Sinica, 2023, 43(3):398-410.
doi: 10.13249/j.cnki.sgs.2023.03.003
[23] 陈红星. 基于多源数据和随机森林算法的建筑物尺度人口估算[D]. 上海: 华东师范大学, 2021.
[23] Chen H X. Population estimation at the building level based on multi-source data and random forest algorithm[D]. Shanghai: East China Normal University, 2021.
[24] 胡永攀, 李瑛, 姚熠凯, 等. 基于顺序向前选择算法的制冷系统故障诊断分析[J]. 能源研究与信息, 2016, 32(2):90-95.
[24] Hu Y P, Li Y, Yao Y K, et al. Refrigeration system fault diagnosis based on sequential forward order feature selection algorithm[J]. Energy Research and Information, 2016, 32(2):90-95.
[25] 王斌, 何丙辉, 林娜, 等. 基于随机森林特征选择的茶园遥感提取[J]. 吉林大学学报(工学版), 2022, 52(7):1719-1732.
[25] Wang B, He B H, Lin N, et al. Tea plantation remote sensing extraction based on random forest feature selection[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(7):1719-1732.
[1] AO Yong, WANG Ya, WANG Xiaofeng, WU Jingsheng, ZHANG Yiheng, LI Xuejiao. Spatiotemporal changes of ecological quality and their driving factors in Zhengzhou City over the last 20 years[J]. Remote Sensing for Natural Resources, 2025, 37(1): 102-112.
[2] CHEN Jiaxue, XIAO Dongsheng, CHEN Hongyu. A boundary guidance and cross-scale information interaction network for water body extraction from remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(1): 15-23.
[3] SHI Haigang, LIANG Chunli, XUE Qing, ZHANG En, ZHANG Xinyi, ZHANG Jianyong, ZHANG Chunlei, CHENG Xu. A study of temperature distribution in the sea area around Qinshan Nuclear Power Plant based on satellite remote sensing[J]. Remote Sensing for Natural Resources, 2025, 37(1): 152-160.
[4] LIU Wenhui, LI Xinye, LI Xiaoyan. Grassland degradation and its response to drought in the western Songnen Plain based on comprehensive remote sensing index[J]. Remote Sensing for Natural Resources, 2025, 37(1): 232-242.
[5] XU Xinyu, LI Xiaojun, GE Junfei, LI Yikun. A multispectral image pansharpening algorithm based on nonsubsampled contourlet transform (NSCT) combined with a guided filter[J]. Remote Sensing for Natural Resources, 2025, 37(1): 24-30.
[6] WANG Tixin, YANG Jinzhong, XING Yu, WANG Kaijian. A method for automatic mapping of the remote sensing monitoring results of national nature reserves based on ArcPy and map optimization[J]. Remote Sensing for Natural Resources, 2025, 37(1): 252-259.
[7] WEI Xiao, ZHANG Lifeng, HE Yi, CAO Shengpeng, SUN Qiang, GAO Binghai. 2000-2020 spatiotemporal variations of different vegetation types in the Yellow River basin and influencing factors[J]. Remote Sensing for Natural Resources, 2024, 36(4): 229-241.
[8] ZHAO Yuling, YANG Jinzhong, SUN Weidong, YU Hao, XING Yu, CHEN Dong, MA Xinying, WANG Tixin, WANG Cong. Evaluation and analysis of geological environment of mines in the Ili Valley and countermeasures for ecological restoration and management[J]. Remote Sensing for Natural Resources, 2024, 36(4): 23-30.
[9] QI Changwei, DONG Ji’en, CHENG Xu, YE Gaofeng, HE Shuyue, DAI Wei, WANG Bing. Application of ZY-1 02D hyperspectral data to altered mineral mapping and ore prospecting in desert areas along the northern margin of the Qaidam Basin[J]. Remote Sensing for Natural Resources, 2024, 36(4): 31-42.
[10] FENG Lei, WANG Yi, LI Wenji, WANG Yanzuo, ZHENG Xiangxiang, WANG Shanshan, ZHANG Ling. Development and application of 3D geological hazard identification information platform[J]. Remote Sensing for Natural Resources, 2024, 36(4): 321-327.
[11] QIU Junting, LI Jiangkun, GE Tengfei, MU Hongxu, RUI Xinmin, YANG Yunhan, YANG Yanjie. Application of multi-source remote sensing data in the exploration of sandstone-type uranium deposits: A case study of the Yingen area, Bayingebi basin[J]. Remote Sensing for Natural Resources, 2024, 36(4): 43-54.
[12] LAI Shijiu, HU Jinshan, KANG Jianrong, WANG Xiaobing. Ecological evolution of coal resource-based regions: A case study of Shanxi Province[J]. Remote Sensing for Natural Resources, 2024, 36(4): 62-74.
[13] YE Lijuan, DUAN Xiaolong, LI Ting, ZHANG Jing, ZHANG Yun, CHEN Donglei. Distribution and rehabilitation status of lands destroyed by mining: A case study of Hebei Province[J]. Remote Sensing for Natural Resources, 2024, 36(4): 75-81.
[14] LUO Zhenhai, ZHANG Chao, FENG Shaoyuan, TANG Min, LIU Rui, KONG Jiying. Advances in research on methods for optical remote sensing monitoring of soil salinization[J]. Remote Sensing for Natural Resources, 2024, 36(4): 9-22.
[15] LING Xiaolu, CHEN Chaorong, GUO Weidong, QIN Kai, ZHANG Jinlong. Comprehensive evaluation of ESA CCI soil moisture data in eastern China[J]. Remote Sensing for Natural Resources, 2024, 36(4): 92-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech