Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (4) : 321-327     DOI: 10.6046/zrzyyg.2023201
|
Development and application of 3D geological hazard identification information platform
FENG Lei(), WANG Yi(), LI Wenji, WANG Yanzuo, ZHENG Xiangxiang, WANG Shanshan, ZHANG Ling
China Areo Geophysical Survey and Remote Sensing Center for Natural Resource, Beijing 100083, China
Download: PDF(4215 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent years, geological hazard identification based on integrated remote sensing has been widely carried out, featuring wide surveyed areas, high time pressure, and heavy tasks. To meet the demand for the effective utilization of multi-source remote sensing data, multi-person collaboration, and quick result integration, along with the requirements of geological hazard identification tools, this study established a 3D geological hazard identification information platform. This platform, adopting a C/S architecture, allows for the effective organization and management of multi-source optical and radar remote sensing data, vector data, and 3D models and possesses functions such as the loading of multi-source data, multi-person collaboration, quick interpretations and identification, and result expression and output. This platform has successively supported fine-scale identification of hidden hazards and multiple emergency security efforts in national key areas with high geologic hazard susceptibility, such as Gansu, Yunnan, and Sichuan provinces. The application results indicate that this platform allows for rapid data supply and assists in improving work efficiency.

Keywords geological hazard identification      remote sensing interpretation      3D GIS platform      multi-source data management     
ZTFLH:  TP79  
Issue Date: 23 December 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei FENG
Yi WANG
Wenji LI
Yanzuo WANG
Xiangxiang ZHENG
Shanshan WANG
Ling ZHANG
Cite this article:   
Lei FENG,Yi WANG,Wenji LI, et al. Development and application of 3D geological hazard identification information platform[J]. Remote Sensing for Natural Resources, 2024, 36(4): 321-327.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023201     OR     https://www.gtzyyg.com/EN/Y2024/V36/I4/321
Fig.1  System architecture diagram
Fig.2  Hazard identification business flowchart
Fig.3  Database composition structure diagram
Fig.4  Composition functions for 3D geological hazard identification business platform
Fig.5  Home screen of 3D geological hazard identification business platform
Fig.6  Interface of data resource management model
Fig.7  Plotting in 3D scene and standardized input of attribute data
序号 填写项 占位标识符 填写方式 格式要求
1 隐患编号 $YHBH$ 自动填写 统一编码规范
2 隐患类型 $YHLX$ 自动导出 数据字典约束
3 隐患规模 $YHGM$ 自动导出 数据字典约束
4 中心点经度 $ZXDJD$ 自动填写 小数点6位,单位 度
5 中心点纬度 $ZXDWD$ 自动填写 小数点6位,单位 度
6 地表形变特征 $INSARPIC$ 自动截图 截图、文字描述
7 光学形态特征 $IMAGEPIC$ 自动截图 截图、文字描述
8 威胁对象 $WXDX$ 自动导出 数据字典约束
9 风险等级 $FXDJ$ 自动导出 数据字典约束
10 识别结果 $SBJG$ 自动导出 数据字典约束
11 识别人 $SBR$ 自动填写 完整全名
12 识别时间 $SBSJ$ 自动填写 例,2023年5月1日
13 检查人 $JCR$ 自动填写 完整全名
14 检查时间 $JCSJ$ 自动填写 例,2023年5月1日
Tab.1  Content of hazard identification record form
[1] 刘斌, 葛大庆, 王珊珊, 等. TOPS和ScanSAR模式InSAR在广域地灾隐患识别中的联合应用[J]. 武汉大学学报(信息科学版), 2020, 45(11):1756-1762.
[1] Liu B, Ge D Q, Wang S S, et al. Combining application of TOPS and ScanSAR InSAR in large-scale geohazards identification[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1756-1762.
[2] 葛大庆, 戴可人, 郭兆成, 等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版), 2019, 44(7):949-956.
[2] Ge D Q, Dai K R, Guo Z C, et al. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):949-956.
[3] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
[3] Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
[4] 童立强, 郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感, 2013, 25(1):86-92.doi:10.6046/gtzyyg.2013.01.16.
[4] Tong L Q, Guo Z C. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land and Resources, 2013, 25(1):86-92.doi:10.6046/gtzyyg.2013.01.16.
[5] 童立强. “5·12”汶川大地震极重灾区地震堰塞湖应急遥感调查[J]. 国土资源遥感, 2008, 20(3):61-63,112.doi:10.6046/gtzyyg.2008.03.14.
[5] Tong L Q. Emergency remote sensing investigation of barrier lakes at the quake center area caused by “5·12” Wenchuan strong earthquake[J]. Remote Sensing for Land and Resources, 2008, 20(3):61-63,112.doi:10.6046/gtzyyg.2008.03.14.
[6] 刘春玲, 童立强, 祁生文, 等. 喜马拉雅山地区冰川湖溃决灾害隐患遥感调查及影响因素分析[J]. 国土资源遥感, 2016, 28(3):110-115.doi:10.6046/gtzyyg.2016.03.18.
[6] Liu C L, Tong L Q, Qi S W, et al. Remote sensing investigation and influence factor analysis of glacier lake outburst potential in the Himalayas[J]. Remote Sensing for Land and Resources, 2016, 28(3):110-115.doi:10.6046/gtzyyg.2016.03.18.
[7] 童立强, 张晓坤, 李曼, 等. “6·28”关岭滑坡特大地质灾害应急遥感调查研究[J]. 国土资源遥感, 2010, 22(3):65-68.doi:10.6046/gtzyyg.2010.03.14.
[7] Tong L Q, Zhang X K, Li M, et al. Emergency remote sensing research on superlarge geological disasters caused by “6·28” Guanling landslide[J]. Remote Sensing for Land and Resources, 2010, 22(3):65-68.doi:10.6046/gtzyyg.2010.03.14.
[8] 周伟, 黄炜, 王彦佐, 等. 资源一号02C卫星数据管理与服务系统研建[J]. 国土资源遥感, 2014, 26(1):179-185. doi:10.6046/gtzyyg.2014.01.30.
[8] Zhou W, Huang W, Wang Y Z, et al. Tentative construction of satellite data management and service system for ZY-1 02C[J]. Remote Sensing for Land and Resources, 2014, 26(1):179-185.doi:10.6046/gtzyyg.2014.01.30.
[9] 王彦佐, 周伟, 冯磊. 内存数据库在ZY1-02C海量数据空间检索中的应用[J]. 国土资源遥感, 2018, 30(1):238-242.doi:10.6046/gtzyyg.2018.01.33.
[9] Wang Y Z, Zhou W, Feng L. Application of main memory database to spatial query of mass ZY1-02C data[J]. Remote Sensing for Land and Resources, 2018, 30(1):238-242.doi:10.6046/gtzyyg.2018.01.33.
[10] 随欣欣, 眭素文, 刘锟. 面向遥感业务应用的解译成果数据管理系统研究和构建[J]. 国土资源遥感, 2018, 30(3):238-243.doi:10.6046/gtzyyg.2018.03.32.
[10] Sui X X, Sui S W, Liu K. Research and construction of interpretation result data management system toward remote sensing application[J]. Remote Sensing for Land and Resources, 2018, 30(3):238-243.doi:10.6046/gtzyyg.2018.03.32.
[11] 随欣欣, 眭素文. 基于MapGIS和ArcGIS的遥感解译成果图件数据库设计与实现[J]. 国土资源遥感, 2018, 30(4):218-224.doi:10.6046/gtzyyg.2018.04.33.
[11] Sui X X, Sui S W. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land and Resources, 2018, 30(4):218-224.doi:10.6046/gtzyyg.2018.04.33.
[12] 郭兆成, 周成虎, 孙晓宇, 等. 汶川地震触发崩滑地质灾害空间分布及影响因素[J]. 地学前缘, 2010, 17(5):234-242.
[12] Guo Z C, Zhou C H, Sun X Y, et al. The distribution of landslide triggered by Wenchuan earthquake and its causative factors[J]. Earth Science Frontiers, 2010, 17(5):234-242.
[13] 侯兴泽, 蒋大鹏, 徐健, 等. 三维GIS在地质灾害隐患防治中的应用研究[J]. 测绘, 2020, 43(2):63-67.
[13] Hou X Z, Jiang D P, Xu J, et al. Research on the application of 3D GIS in geological hazard prevention and control[J]. Surveying and Mapping, 2020, 43(2):63-67.
[14] 王轶, 张晓坤, 童立强. 三峡库区遥感三维立体仿真系统及其应用[J]. 遥感信息, 2012, 27(4):40-43.
[14] Wang Y, Zhang X K, Tong L Q. Development and application of a 3D simulation system based on remotely sensed information within Three Gorges Reservoir area[J]. Remote Sensing Information, 2012, 27(4):40-43.
[15] 乌云其其格, 马维峰, 张时忠, 等. 基于三维的地质灾害遥感解译标志管理系统设计与实现[J]. 国土资源遥感, 2012, 24(2):148-151.doi:10.6046/gtzyyg.2012.02.27.
[15] Wu Y, Ma W F, Zhang S Z, et al. The design and dvelopment of the interpreting marks management system for geological disasters based on 3D[J]. Remote Sensing for Land and Resources, 2012, 24(2):148-151.doi:10.6046/gtzyyg.2012.02.27.
[1] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[2] Xiaoping XIE, Maowei BAI, Zhicong CHEN, Weibo LIU, Shuna XI. Remote sensing image interpretation and tectonic activity study of the active faults along the northeastern segment of the Longmenshan fault[J]. Remote Sensing for Land & Resources, 2019, 31(1): 237-246.
[3] Xinxin SUI, Suwen SUI. Design and implementation of remote sensing interpretation map database based on MapGIS and ArcGIS[J]. Remote Sensing for Land & Resources, 2018, 30(4): 218-224.
[4] Xinxin SUI, Suwen SUI, Kun LIU. Research and construction of interpretation result data management system toward remote sensing application[J]. Remote Sensing for Land & Resources, 2018, 30(3): 238-243.
[5] Ruijun WANG, Bokun YAN, Mingsong LI, Shuangfa DONG, Yongbin SUN, Bing WANG. Remote sensing interpretation of important ore-controlling geological units in Hongshan Region of Gansu Province using GF-1 image and its application[J]. Remote Sensing for Land & Resources, 2018, 30(2): 162-170.
[6] LI Haiying. Application of domestic high resolution remote sensing data to environmental geological survey[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 46-51.
[7] LI Xiaomin, ZHANG Kun, LI Dongling, LI Delin, LI Zongren, ZHANG Xing. Remote sensing technology delineation method and its application to permafrost of Zhada area in the Tibetan Plateau[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 57-64.
[8] LI Xiaomin, YAN Yunpeng, LIU Gang, LI Dongling, ZHANG Xing, ZHUANG Yongcheng. Application of ZY-1 02C satellite data to hydrogeological investigation in Zanda area, Tibet[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 141-148.
[9] ZHANG Kun, LI Xiaomin, MA Shibin, LIU Shiying, LI Shenghui. Application of GF-1 image to geological disaster survey in Cosibsumgy village on Sino-India border area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 139-148.
[10] SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
[11] LIU Dechang, TONG Qinlong, LIN Ziyu, YANG Guofang. Remote sensing geological interpretation and strategy area selection for mineral exploration in Europe[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 136-143.
[12] XU Yueren, HE Honglin, CHEN Lize, SHEN Xuhui. Dynamic remote sensing interpretation of geological disasters in Nanping City of Fujian Province using CBERS serial data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 153-159.
[13] XU Bing, FANG Chen. Data fusion methods of ZY-1 02C and ETM+ images and effect evaluation[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 80-85.
[14] ZHANG Mingyang, MA Weifeng, TANG Xiangdan, LI Xianwei. Automatic mapping of the results of 3D remote sensing interpretation of geological disasters[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(2): 164-167.
[15] YU Feng-ming, HE Long-qing, WANG Lei. Remote Sensing Interpretation of Ductile Shear Zone in Wudang Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(4): 124-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech