|
|
|
|
|
|
Application of multi-source remote sensing data in the exploration of sandstone-type uranium deposits: A case study of the Yingen area, Bayingebi basin |
QIU Junting1( ), LI Jiangkun2, GE Tengfei3, MU Hongxu1, RUI Xinmin1, YANG Yunhan1, YANG Yanjie1 |
1. Beijing Research Institute of Uranium Geology, Beijing 100029, China 2. Airborne Survey and Remote Sensing Center of Nuclear Industry, Shijiazhuang 050049, China 3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China |
|
|
Abstract Sandstone-type uranium deposits emerge as important uranium resources, while remote sensing is identified as a vital method for mineral resource exploration. Since sandstone-type uranium deposits typically occur underground and tend to be covered by sediments, whether remote sensing can be effectively applied to the exploration of such deposits merits investigation. This study investigated the Yingen area in the Bayingobi basin. Utilizing multi-source remote sensing data from Sentinel2, Landsat7 ETM+, ASTER, ALOS DEM, and airborne radioactivity measurements, this study performed terrain visualization, structural interpretations, K-T transformation, NDVI index calculation, alteration mineral extraction, and Th/U ratio calculation. The results were then comprehensively analyzed from the perspective of the metallogenic model, metallogenic conditions, and ore-controlling factors of secondary reduced sandstone-type uranium deposits. The analytical results indicate that the Yingen area consists of an uplift zone in the center, a depression zone in the southeast, and a slope zone between them. The granitic rocks in the uplift zone are identified as significant sources of uranium. Multiple EW-trending faults in the slope zone facilitate the migration of uranium-bearing oxidized water underground. Additionally, the water-rich areas in the depression zone, combined with strong surface evaporation, create favorable conditions for the drainage and evaporation of uranium-bearing oxidized water, further promoting groundwater circulation. Therefore, the uplift zone, slope zone, and depression zone in the Yingen area form a complete circulation system for uranium-bearing oxidized water. In combination with previous data, this study holds that the slope zone might serve as a favorable area for the formation of secondary reduced sandstone-type uranium deposits. This study also demonstrates that even in seriously overburden areas, remote sensing can provide valuable guidance for uranium exploration by identifying metallogenic conditions and ore-controlling factors.
|
Keywords
remote sensing
sandstone-type uranium deposit
Bayingebi
Yingen area
|
|
Issue Date: 23 December 2024
|
|
|
[1] |
罗毅, 何中波. 内蒙古巴音戈壁盆地砂岩型铀矿成矿条件分析与铀资源潜力评价[R]. 北京: 核工业北京地质研究院, 2009.
|
[1] |
Luo Y, He Z B. Ore-forming condition analysis and uranium resource potential evaluation of sandstone-type uranium deposit in Bayin Gobi Basin,Inner Mongolia[R]. Beijing: Beijing Research Institute of Uranium Geology, 2009.
|
[2] |
张成勇, 聂逢君, 候树仁, 等. 内蒙古巴音戈壁盆地塔木素地区砂岩型铀矿控制因素与成矿模式[J]. 地质科技情报, 2015, 34(1):140-147.
|
[2] |
Zhang C Y, Nie F J, Hou S R, et al. Geological characteristics and uranium metallogenic model of Tamusu uranium deposit in Bayin Gobi Basin[J]. Geological Science and Technology Information, 2015, 34(1):140-147.
|
[3] |
申科峰, 杨建新, 侯树仁, 等. 内蒙古中新生代主要含铀沉积盆地找矿突破技术思路及其成果扩大方向[J]. 中国地质, 2014, 41(4):1304-1313.
|
[3] |
Sheng K F, Yang J X, Hou S R, et al. Uranium prospecting breakthrough,achievement expanding and prospecting orientation in main Mesozoic-Cenozoic sedimentary uranium basins of Inner Mongolia[J]. Geology in China, 2014, 41(4): 1304-1313.
|
[4] |
李鹏, 王强, 戴明建, 等. 巴音戈壁盆地塔木素铀矿床矿石蚀变特征与热流体作用的响应[J]. 矿物学报, 2017(s1):479.
|
[4] |
Li P, Wang Q, Dai M J, et al. Geological characteristics and uranium metallogenic model of Tamusu uranium deposit in Bayin Gobi Basin[J]. Acta Mineralogica Sinica, 2017 (s1):479.
|
[5] |
彭云彪, 王强, 戴明建, 等. 巴音戈壁盆地TMS铀矿床矿体空间展布特征与找矿预测[J]. 世界核地质科学, 2018, 35(3): 131-136.
|
[5] |
Peng Y B, Wang Q, Dai M J, et al. Ore body spatial distribution characteristics of TMS uranium deposit and prospecting prediction in Bayingebi basin[J]. World Nuclear Geoscience, 2018, 35(3): 131-136.
|
[6] |
木红旭, 马天碧, 郭强, 等. 松辽盆地南部局部排泄构造遥感识别与铀找矿方向探讨[J]. 地质与勘探, 2023, 59(1):134-144.
|
[6] |
Mu H X, Ma T B, Guo Q, et al. Remote sensing identification of local drainage fault structures and uranium prospecting direction in the south of Songliao Basin[J]. Geology and Exploration, 2023, 59(1): 134-144.
|
[7] |
刘德长, 邱骏挺, 闫柏琨, 等. 高光谱热红外遥感技术在地质找矿中的应用[J]. 地质论评, 2018, 64(5):1190-1200.
|
[7] |
Liu D C, Qiu J T, Yan B K, et al. Application of thermal inferred hyperspectral remote sensing in ore exploration[J]. Geological Review, 2018, 64(5): 1190-1200.
|
[8] |
刘德长, 田丰, 邱骏挺, 等. 柳园-方山口地区航空高光谱遥感固体矿产探测及找矿效果[J]. 地质学报, 2017, 91(12):2781-2795.
|
[8] |
Liu D C, Tian F, Qiu J T, et al. Application of hyperspectral remote sensing in solid ore exploration in the Liuyuan-Fangshankou area[J]. Acta Geologica Sinica, 2017, 91(12):2781-2795.
|
[9] |
刘德长, 赵英俊, 叶发旺, 等. 航空高光谱遥感区域成矿背景研究——以甘肃柳园—方山口地区为例[J]. 遥感学报, 2017, 21(1):136-148.
|
[9] |
Liu D C, Zhao Y J, Ye F W, et al. Study on the metallogenic background of the Liuyuan-Fangshankou area by using airborne hyperspectral remote sensing[J]. Journal of Remote Sensing, 2017, 21(1): 136-148.
|
[10] |
刘德长, 闫柏琨, 邱骏挺. 航空高光谱遥感固体矿产预测方法与示范应用[J]. 地球学报, 2016, 37(3):349-358.
|
[10] |
Liu D C, Yan B K, Qiu J T. The Application of airborne hyper-spectral remote sensing technology to mineral resources exploration[J]. Acta Geoscientica Sinica, 2016, 37(3): 349-358.
|
[11] |
刘德长, 叶发旺, 赵英俊, 等. 航空高光谱遥感金矿床定位模型及找矿应用——以甘肃北山柳园-方山口地区为例[J]. 地球信息科学学报, 2015, 17(12):1545-1553.
doi: 10.3724/SP.J.1047.2015.01545
|
[11] |
Liu D C, Ye F W, Zhao Y J, et al. Airborne hyperspectral remote sensing for gold prospecting around Liuyuan-Fangshankou area,Gansu Province,China[J]. Journal of Geoinformation Science, 2015, 17(12):1545-1553.
|
[12] |
刘德长, 邱骏挺, 童勤龙, 等. 新疆吉木萨尔地区油气渗漏与盐碱化相关性的航空高光谱遥感探测研究[J]. 中国地质, 2018, 45(5):1062-1073.
|
[12] |
Liu D C, Qiu J T, Tong Q L, et al. Airborne hyperspectral study of spatial relationship between oil and gas leakage and salinization in Jimusar area[J]. Geology in China, 2018, 45(5): 1062-1073.
|
[13] |
Aita S K, Omar A E. Exploration of uranium and mineral deposits using remote sensing data and GIS applications,Serbal area,Southwestern Sinai,Egypt[J]. Arabian Journal of Geosciences, 2021, 14:2214.
|
[14] |
dos Reis Salles R, de Souza Filho C R, Cudahy T, et al. Hyperspectral remote sensing applied to uranium exploration: A case study at the Mary Kathleen metamorphic-hydrothermal U-REE deposit,NW,Queensland,Australia[J]. Journal of Geochemical Exploration, 2017, 179:36-50.
|
[15] |
Mariem M I, Amin B P, Hanafi B, et al. Lithological and alteration mapping using Landsat 8 and ASTER satellite data in the Reguibat Shield (West African Craton),North of Mauritania:Implications for uranium exploration[J]. Arabian Journal of Geosciences, 2021, 14:2576.
|
[16] |
李子颖, 刘武生, 李伟涛, 等. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用[J]. 中国地质, 2022, 49(4):1009-1047.
|
[16] |
Li Z Y, Liu W S, Li W T, et al. Exudative metallogeny of the Hadatu sandstone-type uranium deposit in the Erlian Basin,Inner Mongolia[J]. Geology in China, 2022, 49(4):1009-1047.
|
[17] |
康欢, 陈岳龙, 李大鹏, 等. 二连盆地哈达图铀矿床覆盖区地球化学异常源示踪与判别[J]. 铀矿地质, 2019, 35(6):351-358.
|
[17] |
Kang H, Chen Y, Li D, et al. Tracing and distinguishing geochemical anomalous sources in coverage area of Hadatu uranium deposit of Erlian Basin[J]. Uranium Geology, 2019, 35(06):351-358.
|
[18] |
刘德长, 申晋利, 邱骏挺, 等. 从遥感地质角度对钱家店铀矿区的再认识[J]. 铀矿地质, 2018, 34(5):314-320.
|
[18] |
Liu D C, Shen J L, Qiu J T, et al. Geological analysis of Qianjiadian uranium deposit based on remote sensing technology[J]. Uranium Geology, 2018, 34(5): 314-320.
|
[19] |
Jaireth S, McKay A, Lambert I. Association of large sandstone uranium deposits with hydrocarbons[J]. AusGeo News, 2008, 89:1-6.
|
[20] |
Qiu J T, Mu H X, Yu X Q, et al. Identifying the principal factors controlling uranium enrichment: Semi-quantitative mineralogy and geochemistry of the sandstone-type Qianjiadian uranium deposit,northeast China[J]. Ore Geology Reviews, 2022, 144:104807.
|
[21] |
刘波, 时志强, 彭云彪, 等. 巴音戈壁盆地塔木素铀矿床地质特征及铀成矿模式研究[J]. 矿床地质, 2020, 39(1):168-183.
|
[21] |
Liu B, Shi Z Q, Peng Y B, et al. Geological characteristics and uranium metallogenic model of Tamusu uranium deposit in Bayin Gobi Basin[J]. Mineral Deposits, 2020, 39(1):168-183.
|
[22] |
何中波, 罗毅, 马汉峰. 巴音戈壁盆地含矿目的层沉积相特征与砂岩型铀矿化的关系[J]. 世界核地质科学, 2010, 27(1):11-18.
|
[22] |
He Z B, Luo Y, Ma H F. Sedimentary facies characteristics of ore-bearing target horizon and its relationship to sandstone-type uranium mineralization in Bayingebi Basin[J]. World Nuclear Geoscience, 2010, 27(1):11-18.
|
[23] |
丁叶, 侯树仁, 王俊林. 巴音戈壁铀矿床特征及成因分析[J]. 矿床地质, 2012, 31(s1):193-194.
|
[23] |
Ding Y, Hou S R, Wang J L. Geological characteristics and petrogensis of uranium deposits in Bayingobi[J]. Mineral Deposits, 2012, 31(s1): 193-194.
|
[24] |
肖国贤, 李文辉, 候树文, 等. 内蒙古巴音戈壁塔木素铀矿床的控制因素及矿床成因探讨[J]. 世界地质, 2017, 25(12):39-41.
|
[24] |
Xiao G X, Li W H, Hou S W, et al. Controlling factors and genesis of Tamusu Uranium deposit in Bayingebi Basin,Inner Mongolia[J]. Global Geology, 2017, 36(4): 1124-1132.
|
[25] |
史兴俊, 张磊, 王涛, 等. 内蒙古阿拉善盟北部宗乃山中酸性侵入岩年代学、地球化学及构造意义[J]. 岩石矿物学杂志, 2014, 33(6):989-1007.
|
[25] |
Shi X J, Zhang L, Wang T, et al. Geochronology and geochemistry of the intermediate-acid intrusive rocks from Zongnaishan area in northern Alxa,Inner Mongolia,and their tectonic implications[J]. Acta Petrologica Et Mineralogica, 2014, 33(6): 989-1007.
|
[26] |
李鹏, 刘波, 叶茂, 等. 巴音戈壁盆地中南部中新生代构造-沉积演化对铀成矿的制约及找矿预测[J]. 中国地质, 2022, 49(2):542-557.
|
[26] |
Li P, Liu B, Ye M, et al. Constraints of Mesozoic- Cenozoic tectonic-sedimentary evolution on uranium mineralization and prospecting prediction in the Central and Southern Bayin Gobi Basin[J]. Geology in China, 2022, 49(2): 542-557.
|
[27] |
Chen Q, Zhao Z, Zhou J, et al. ASTER and GF-5 satellite data for mapping hydrothermal alteration minerals in the Longtoushan Pb-Zn Deposit,SW China[J]. Remote Sensing, 2022, 14(5):1253.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|