|
Abstract Hazes reduce the quality of remote sensing images while limiting the performance of back-end visual applications. Hence, this study proposed a multi-scale residual dehazing network based on dual attention. First, an atmospheric scattering model was constructed to combine the atmospheric light value and transmissivity to derive the atmospheric power of light. Second, an end-to-end deep learning model was used to clarify remote sensing images with hazes. The dehazing network consists of a shallow feature extraction module, a deep data extraction module, a dual mapping network, and a parallel convolution reconstruction module. Finally, the proposed dehazing network was compared with CARL-net, DFAD-net, SRBFP-net, and AMGP-net through subjective and objective comparison experiments. The results indicate that the proposed dehazing network obtained a visual state close to the original haze-free scene, exhibiting high contrast, bright chroma, corresponding saturation, and clear transmission map details. Moreover, it effectively removed image noise while maintaining the edge of the foreground part. Compared to the above four networks, the proposed dehazing network achieved superior peak signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM), higher algorithm processing efficiency, and stable algorithm processing time with the increase of image resolution.
|
Keywords
attention
residual
atmospheric power of light
end-to-end
dual mapping
|
|
Issue Date: 03 September 2025
|
|
|
[1] |
单慧琳, 王硕洋, 童俊毅, 等. 增强小目标特征的多尺度光学遥感图像目标检测[J]. 光学学报, 2024, 44(6):382-394.
|
[1] |
Shan H L, Wang S Y, Tong J Y, et al. Multi-scale optical remote sensing image target detection based on enhanced small target features[J]. Acta Optica Sinica, 2024, 44(6):382-394.
|
[2] |
孙航, 方帅领, 但志平, 等. 层级特征交互与增强感受野双分支遥感图像去雾网络[J]. 遥感学报, 2023, 27(12):2831-2846.
|
[2] |
Sun H, Fang S L, Dan Z P, et al. A two-branch remote sensing image dehazing network based on hierarchical feature interaction and enhanced receptive field[J]. National Remote Sensing Bulletin, 2023, 27(12):2831-2846.
|
[3] |
王科平, 杨艺, 费树岷. 雾霾图像清晰化算法综述[J]. 智能系统学报, 2023, 18(2):217-230.
|
[3] |
Wang K P, Yang Y, Fei S M. Review of hazy image sharpening methods[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2):217-230.
|
[4] |
Feng X, Tan J Q, Ge X Y, et al. Blind image deblurring via weighted dark channel prior[J]. Circuits,Systems,and Signal Processing, 2023, 42(9):5478-5499.
|
[5] |
连文杰, 叶少珍. 注意力机制下的多层次特征融合图像去雾算法[J]. 福州大学学报(自然科学版), 2024, 52(1):7-13.
|
[5] |
Lian W J, Ye S Z. Image dehazing algorithm based on multi-level feature fusion and attention mechanism[J]. Journal of Fuzhou University (Natural Science Edition), 2024, 52(1):7-13.
|
[6] |
Frants V, Agaian S, Panetta K. QCNN-H:Single-image dehazing using quaternion neural networks[J]. IEEE Transactions on Cybernetics, 2023, 53(9):5448-5458.
|
[7] |
Yang Y Z, Hou C, Huang H X, et al. Cascaded deep residual learning network for single image dehazing[J]. Multimedia Systems, 2023, 29(4):2037-2048.
|
[8] |
Liu J L, Yu H, Zhang Z Z, et al. Deep multi-scale network for single image dehazing with self-guided maps[J]. Signal,Image and Video Processing, 2023, 17(6):2867-2875.
|
[9] |
Hao Y, Jiang W Z, Liu W F, et al. Dynamic feature attention network for remote sensing image dehazing[J]. Neural Processing Letters, 2023, 55(6):8081-8094.
|
[10] |
唐剑, 车文刚, 高盛祥. 融入注意力机制的多尺度卷积图像去雾方法[J]. 计算机工程与科学, 2023, 45(8):1453-1462.
|
[10] |
Tang J, Che W G, Gao S X. An image dehazing method based on multi-scale convolution with attention mechanism[J]. Computer Engineering and Science, 2023, 45(8):1453-1462.
|
[11] |
Chen Y, Lyu Z, Hou Y M. IPDNet:A dual convolutional network combined with image prior for single image dehazing[J]. Engineering Applications of Artificial Intelligence, 2023, 126:106782.
|
[12] |
王科平, 肖梦临. 基于增强型金字塔及图像超分辨率去雾网络[J]. 兵器装备工程学报, 2023, 44(11):299-307.
|
[12] |
Wang K P, Xiao M L. Based on image super-resolution and boost-ed feature pyramid dehazing network[J]. Journal of Ordnance Equipment Engineering, 2023, 44(11):299-307.
|
[13] |
张浩文, 杨燕, 张金龙, 等. 基于注意力与多尺度分组并联网络的去雾算法[J]. 传感器与微系统, 2023, 42(10):151-155.
|
[13] |
Zhang H W, Yang Y, Zhang J L, et al. Dehazing algorithm based on attention and multi-scale grouping parallel network[J]. Transducer and Microsystem Technologies, 2023, 42(10):151-155.
|
[14] |
唐斌, 陈清容, 段春红. 基于大气散射模型的图像去雾及亮度增强算法[J]. 光电子·激光, 2024, 35(3):303-310.
|
[14] |
Tang B, Chen Q R, Duan C H. Image dehazing and brightness enhancement algorithm based on atmospheric scattering model[J]. Journal of Optoelectronics·Laser, 2024, 35(3):303-310.
|
[15] |
刘宇佳, 谢诗哲, 杜阳, 等. 结合空间语义注意力的二段式遥感图像修复网络[J]. 自然资源遥感, 2024, 36(1):58-66.doi:10.6046/gtzyyg.2022362.
|
[15] |
Liu Y J, Xie S Z, Du Y, et al. A two-stage remote sensing image inpainting network combined with spatial semantic attention[J]. Remote Sensing for Natural Resources, 2024, 36(1):58-66.doi:10.6046/gtzyyg.2022362.
|
[16] |
He K M, Sun J, Tang X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|