|
|
|
|
|
|
Fusion of hyperspectral and LiDAR data: A case study for refined crop classification in agricultural region of Zhangye Oasis in the middle reaches of Heihe River |
Sirui YANG1, Zhaohui XUE1( ), Ling ZHANG2, Hongjun SU1, Shaoguang ZHOU1 |
1. School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China 2. School of Naval Architecture and Ocean Engineering, Jiangsu Maritime Vocational Institute, Nanjing 211170, China |
|
|
Abstract Hyperspectral remote sensing can simultaneously acquire spatial images of space and fine spectral information so as to describe the features more accurately. However, when the phenomena of different spectra in the same objects or the same spectra in different objects occur, the classification of hyperspectral images will face a daunting challenge. Light detection and ranging (LiDAR) can obtain the terrain topology information and can be used to construct the surface 3D model. However, features cannot be accurately identified by using LiDAR data only. Based on the above two points, the authors carried out a study to fuse hyperspectral images and LiDAR data. Morphological attribute profile was used to extract features, and sparse multinomial logistic regression (SMLR) was used to do classification. The fusion and classification effect in different combinations of characteristics were also investigated. The CASI/SASI aerial hyperspectral image and LiDAR DSM data were used to validate this method based on the Zhangye Oasis agricultural area in the middle reaches of the Heihe River which is a good target for the classification of crop. The results show that the method using hyperspectral and LiDAR data can obtain better classification results with higher accuracy and stability, and the best classification accuracy is 94.50% by fusion features based on the extended morphological attribute profile.
|
Keywords
hyperspectral images
LiDAR
extented morphological attribute profile
SMLR
|
|
Corresponding Authors:
Zhaohui XUE
E-mail: xue@hhu.edu.cn
|
Issue Date: 07 December 2018
|
|
|
[1] |
童庆禧, 张兵, 郑兰芬 . 高光谱遥感——原理、技术与应用[M]. 北京: 高等教育出版社, 2006.
|
[1] |
Tong Q X, Zhang B, Zheng L F. Hyperspectral Remote Sensing[M]. Beijing: Higher Education Press, 2006.
|
[2] |
陈进 . 高光谱图像分类方法研究[D]. 长沙:国防科学技术大学, 2010.
|
[2] |
Chen J . On Classification Method of Hyperspectral Images[D]. Changsha: National University of Defense Technology, 2010.
|
[3] |
刘丽娟 . 基于机载LiDAR和高光谱融合的森林参数反演研究[D]. 哈尔滨:东北林业大学, 2011.
|
[3] |
Liu L J . Fused Airborne LiDAR and Hyperspectral Data for Tree Species Identification in a Natural Temperate Forest[D]. Harbin:Northeast Forestry University, 2011.
|
[4] |
张小红 . 机载激光雷达测量技术理论与方法[M]. 武汉: 武汉大学出版社, 2007.
|
[4] |
Zhang X H. Theory and Method of Airborne LiDAR Measurement Technology[M]. Wuhan: Wuhan University Press, 2007.
|
[5] |
Pedergnana M, Marpu P R, Mura M D , et al. Classification of remote sensing optical and LiDAR data using extended attribute profiles[J]. IEEE Journal of Selected Topics in Signal Processing, 2012,6(7):856-865.
doi: 10.1109/JSTSP.2012.2208177
url: http://ieeexplore.ieee.org/document/6237479/
|
[6] |
Ni L, Gao L R, Li S S , et al. Edge-constrained Markov random field classification by integrating hyperspectral image with LiDAR data overurban areas[J]. Journal of Applied Remote Sensing, 2014,8(1):205-207.
doi: 10.1117/1.JRS.8.085089
url: http://spie.org/Publications/Journal/10.1117/1.JRS.8.085089
|
[7] |
Zhang Y, Yang H L, Prasad S , et al. Ensemble multiple kernel active learning for classification of multisource remote sensing data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,8(2):845-858.
doi: 10.1109/JSTARS.2014.2359136
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6960863
|
[8] |
Gu Y F, Wang Q W, Jia X P , et al. A novel MKL model of integrating LiDAR data and MSI for urban area classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(10):5312-5326.
doi: 10.1109/TGRS.2015.2421051
url: http://ieeexplore.ieee.org/document/7103300/
|
[9] |
Liao W Z, Pizurica A, Bellens R , et al. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features[J]. IEEE Geoscienceand Remote Sensing Letters, 2015,12(3):552-556.
doi: 10.1109/LGRS.2014.2350263
url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6891148
|
[10] |
Bigdeli B, Samadzadegan F, Reinartz P . Feature grouping-based multiple fuzzy classifier system for fusion of hyperspectral and LiDAR data[J].Journal of Applied Remote Sensing, 2014, 8(1):083509-1-15.
doi: 10.1117/1.JRS.8.083509
url: http://spie.org/Publications/Journal/10.1117/1.JRS.8.083509
|
[11] |
Bigdeli B, Samadzadegan F, Reinartz P . Fusion of hyperspectral and LiDAR data using decision template-based fuzzy multiple classifier system[J]. IEEE Journal of Applied Earth Observation and Geoinformation, 2015,38(1):309-320.
doi: 10.1016/j.jag.2015.01.017
url: https://linkinghub.elsevier.com/retrieve/pii/S0303243415000306
|
[12] |
Castrodad A, Khuon T, Rand R , et al. Sparse modeling for hyperspectral imagery with LiDAR data fusion for subpixel mapping[J]. IEEE International Geoscience and Remote Sensing Symposium, 2012,22(8):7275-7278.
doi: 10.1109/IGARSS.2012.6351982
url: http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6351982
|
[13] |
Zhang Y, Prasad S . Multisource geospatial data fusion via local joint sparse representation[J]. IEEE Transactions on Geoscience Remote Sensing, 2016,54(6):3265-3276.
doi: 10.1109/TGRS.2016.2514481
url: http://ieeexplore.ieee.org/document/7387762/
|
[14] |
Yokoya N, Nakazawa S, Matsuki T , et al. Fusion of hyperspectral and LiDAR data for landscape visual quality assessment[J]. IEEE Journal of Selected Topics in Signal Applied Earth Observations and Remote Sensing, 2014,7(6):2419-2425.
doi: 10.1109/JSTARS.2014.2313356
url: http://ieeexplore.ieee.org/document/6783690/
|
[15] |
满其霞 . 激光雷达和高光谱数据融合的城市土地利用分类方法研究[D]. 上海:华东师范大学, 2015.
|
[15] |
Man Q X . Fusion of Hyperspectral and LiDAR Data for Urban Land Use Classification[D]. Shanghai:East China Normal University, 2015.
|
[16] |
董彦芳, 庞勇, 许丽娜 , 等. 高光谱遥感影像与机载LiDAR数据融合的地物提取方法研究[J]. 遥感信息, 2014,29(6):73-76,83.
doi: 10.3969/j.issn.1000-3177.2014.06.015
url: http://d.wanfangdata.com.cn/Periodical_ygxx201406015.aspx
|
[16] |
Dong Y F, Pang Y, Xu L N , et al. Feature extraction based on fusion of hyperspectral image and airborne LiDAR data[J]. Remote Sensing Information, 2014,29(6):73-76,83.
|
[17] |
李光辉, 王成, 习晓环 , 等. 机载LiDAR和高光谱数据融合提取冰川雪线[J]. 国土资源遥感, 2013,25(3):79-84.doi: 10.6046/gtzyyg.2013.03.14.
|
[17] |
Li G H, Wang C, Xi X H , et al. Extraction of glacier snowline based on airborne LiDAR and hyperspectral data fusion[J]. Remote Sensing for Land and Resources, 2013,25(3):79-84.doi: 10.6046/gtzyyg.2013.03.14.
|
[18] |
李新, 刘绍民, 马明国 , 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012,27(5):481-498.
doi: 10.11867/j.issn.1001-8166.2012.05.0481
url: http://d.wanfangdata.com.cn/Periodical_dqkxjz201205001.aspx
|
[18] |
Li X, Liu S M, Ma M G , et al. HiWATER:An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin[J]. Advances in Earth Science, 2012,27(5):481-498.
|
[19] |
角媛梅, 马明国, 肖笃宁 . 黑河流域中游张掖绿洲景观格局研究[J]. 冰川冻土, 2003,25(1):94-99.
doi: 10.3969/j.issn.1000-0240.2003.01.015
url: http://www.cqvip.com/qk/93756X/200301/7475037.html
|
[19] |
Jiao Y M, Ma M G, Xiao D N . Research on the landscape pattern of Zhangye Oasis in the middle reaches of Heihe River[J]. Journal of Glaciology and Geocryology, 2003,25(1):94-99.
|
[20] |
薛朝辉 . 高光谱遥感影像稀疏图嵌入分类研究[D]. 南京:南京大学, 2015.
|
[20] |
Xue Z H . Hyperspectral Remote Sensing Image Classification via Sparse Graph Embedding[D]. Nanjing:Nanjing University, 2015.
|
[21] |
张苗, 蒋志荣, 马明国 , 等. 基于CASI影像的黑河中游种植结构精细分类研究[J]. 遥感技术与应用, 2013,28(2):283-289.
|
[21] |
Zhang M, Jiang Z R, Ma M G , et al. Fine classification of planting structure in the middle reaches of Heihe River Basin based on hyperspectral compace airborne spectrographic imager(CASI) data[J]. Remote Sensing Technology and Application, 2013,28(2):283-289.
|
[22] |
杜培军, 夏俊士, 薛朝辉 , 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016: 20(2):236-256.
doi: 10.11834/jrs.20165022
url: http://d.wanfangdata.com.cn/Periodical/ygxb201602008
|
[22] |
Du P J, Xia J S, Xue Z H , et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016,20(2):236-256.
|
[23] |
杨雨薇, 戴晓爱, 牛育天 , 等. 基于CASI数据的黑河绿洲区叶面积指数反演[J]. 国土资源遥感, 2017,29(4):179-184.doi: 10.6046/gtzyyg.2017.04.27.
|
[23] |
Yang Y W, Dai X A, Niu Y T , et al. Inversion of leaf area index in Heihe Oasis based on CASI data[J]. Remote Sensing for Land and Resources, 2017,29(4):179-184.doi: 10.6046/gtzyyg.2017.04.27.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|