Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (3) : 114-120     DOI: 10.6046/zrzyyg.2020301
|
A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images
BAI Junlong1(), WANG Zhangqiong1(), YAN Haitao2
1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China
2. CCCC Second Highway Consultants, Co., Ltd., Wuhan 430052, China
Download: PDF(5318 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This study proposed a K-means clustering-guided threshold-based approach to classifying the high-resolution remote sensing images obtained using unmanned aerial vehicles (UAVs). The steps of the approach are as follows. First, calculate the average silhouette of the UAV remote sensing image dataset as the optimal number of clusters in the K-means clustering. Then perform K-means clustering on the original images, and manually remove non-target areas in the initial segmentation results. Afterward, perform threshold-based segmentation and image optimization on the new objects obtained to extract objects. Finally, combine all the feature tags obtained to realize the recognition and classification of remote sensing images. The abovementioned processing steps were integrated using the MATLAB/GUI platform. Based on this, a classification processing system of UAV remote sensing images was developed. It can quickly process UAV remote sensing images and achieve semi-automatic interpretation. The accuracy of the classification results was verified, obtaining an overall accuracy of 91.09% and a Kappa coefficient of 0.88. This indicates that the approach proposed in this paper can obtain high-quality segmentation results of UAV remote sensing images.

Keywords K-means clustering      UAV remote sensing      threshold-based segmentation      image classification      MATLAB/GUI     
ZTFLH:  TP751  
Corresponding Authors: WANG Zhangqiong     E-mail: 2502567737@qq.com;wzqcug@163.com
Issue Date: 24 September 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Junlong BAI
Zhangqiong WANG
Haitao YAN
Cite this article:   
Junlong BAI,Zhangqiong WANG,Haitao YAN. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020301     OR     https://www.gtzyyg.com/EN/Y2021/V33/I3/114
Fig.1  Schematic diagram of the relationship between the number of clusters and the Average Silhouette value
Fig.2  The process of threshold classification under K-means clustering guidance
Fig.3  UAV remote sensing image processing system interface
Fig.4  UAV remote sensing image after stitching
Fig.5  Relationship between the number of clusters and the Average Silhouette value
Fig.6  K-means clustering initial segmentation results
Fig.7  Image combination and cutout
Fig.8  GUI tool for image threshold selection
Fig.9  Optimized binary image
Fig.10  Sub interface of image processing system
分类后土地利用类型 真实土地利用类型
林地、草地 水域 交通运输用地 其他土地 行总计 UA/%
林地、草地 148 2 0 14 164 90.24
水域 0 91 0 1 92 98.91
交通运输用地 0 0 68 1 69 98.55
其他土地 13 5 4 102 124 82.26
列总计 161 98 72 118 449
PA/% 91.93 92.86 94.44 86.44
OA=91.09%; Kappa系数=0.88
Tab.1  Confusion matrix
[1] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92(6):79-97.
doi: 10.1016/j.isprsjprs.2014.02.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271614000501
[2] 廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052.
[2] Liao X H, Xiao Q, Zhang H. UAV remote sensing:Popularization and expand application development trend[J]. Journal of Remote Sensing, 2019, 23(6):1046-1052.
[3] 赵星涛, 胡奎, 卢晓攀, 等. 无人机低空航摄的矿山地质灾害精细探测方法[J]. 测绘科学, 2014, 39(6):49-52,64.
[3] Zhao X T, Hu K, Lu X P, et al. Precise detection method for mine geological disasters using low-altitude photogrammetry based on unmanned aerial vehicle[J]. Science of Surveying and Mapping, 2014, 39(6):49-52,64.
[4] 付萧, 郭加伟, 刘秀菊, 等. 无人机高分辨率遥感影像地震滑坡信息提取方法[J]. 地震研究, 2018, 41(2):186-191.
[4] Fu X, Guo J W, Liu X J, et al. Method of earthquake landslide information extraction based on high resolution unmanned aerial vehicle images[J]. Journal of Seismological Research, 2018, 41(2):186-191.
[5] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
doi: 10.6046/gtzyyg.2018.04.08
[5] Zhang K, Hei B Q, Li S Y, et al. Complex scene classification of remote sensing images based on CNN[J]. Remote Sensing for Land and Resources, 2018, 30(4):49-55.doi: 10.6046/gtzyyg.2018.04.08.
doi: 10.6046/gtzyyg.2018.04.08
[6] 陈丹, 武淑琴, 屈萍, 等. 高分辨率遥感影像提取城市土地覆盖信息的决策树优化研究[J]. 统计与决策, 2014, 30(4):55-59.
[6] Chen D, Wu S Q, Qu P, et al. Research on decision tree optimization for extracting urban land cover information from high-resolution remote sensing images[J]. Statistics & Decision, 2014, 30(4):55-59.
[7] 宋超峰. 基于机器学习的地物图像分类方法研究[D]. 太原:中北大学, 2018.
[7] Song C F. Research on ground object image classification method based on machine learning[D]. Taiyuan:North University of China, 2018.
[8] Cheng G, Guo L, Zhao T Y, et al. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA[J]. International Journal of Remote Sensing, 2013, 34(1):45-59.
doi: 10.1080/01431161.2012.705443 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2012.705443
[9] Fiorucci F, Cardinal M, Carla R, et al. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images[J]. Geomorphology, 2011, 129(1):59-70.
doi: 10.1016/j.geomorph.2011.01.013 url: https://linkinghub.elsevier.com/retrieve/pii/S0169555X11000419
[10] 李艳娟, 牛梦婷, 李林辉. 基于蜂群K-means算法的遥感图像聚类应用研究[J]. 计算机工程与应用, 2019, 55(6):151-159.
[10] Li Y J, Niu M T, Li L H. Research on remote sensing image clustering based on bee colony K-means algorithm[J]. Computer Engineering and Applications, 2019, 55(6):151-159.
[11] MacQueen J. Some methods for classification and analysis of multivariate observation[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1967:281-297.
[12] Hung C H, Chiou H M, Yang W N. Candidate groups search for K-harmonic means data clustering[J]. Applied Mathematical Modelling, 2013, 37(24):10123-10128.
doi: 10.1016/j.apm.2013.05.052 url: https://linkinghub.elsevier.com/retrieve/pii/S0307904X13003752
[13] 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23):7-14,63.
[13] Yang J C, Zhao C. Survey on K-means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23):7-14,63.
[14] Saroj K. Review:Study on simple k mean and modified K mean clustering technique[J]. International Journal of Computer Science Engineering and Technology, 2016, 6(7):279-281.
[15] 李金涛, 艾萍, 岳兆新, 等. 基于K-means聚类算法的改进[J]. 国外电子测量技术, 2017, 36(6):9-13.
[15] Li J T, Ai P, Yue Z X, et al. Improvement of clustering algorithm based on K-means[J]. Foreign Electronic Measurement Technology, 2017, 36(6):9-13.
[16] 王慧贤, 靳惠佳, 王娇龙, 等. k均值聚类引导的遥感影像多尺度分割优化方法[J]. 测绘学报, 2015, 59(5):526-532.
[16] Wang H X, Jin H J, Wang J L, et al. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance[J]. Acta Geodaetica et Cartographica Sinica, 2015, 59(5):526-532.
[17] 杨宁, 唐常杰, 王悦, 等. 基于谱聚类的多数据流演化事件挖掘[J]. 软件学报, 2010, 21(10):2395-2409.
[17] Yang N, Tang C J, Wang Y, et al. Mining evolutionary events from multi-streams based on spectral clustering[J]. Journal of Software, 2010, 21(10):2395-2409.
[18] 刘琴, 王恺乐, 饶卫雄. 不等长时间序列滑窗STS距离聚类算法[J]. 计算机科学与探索, 2015, 9(11):1301-1313.
[18] Liu Q, Wang K L, Rao W X. Non-equal time series clustering algorithm with sliding window STS distance[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(11):1301-1313.
[19] 国土资源部. GB/T 21010—2017土地利用现状分类[S]. 北京: 中国标准出版社, 2017.
[19] Ministry of Land and Resources. GB/T 21010—2017 Land Use Status Classification[S]. Beijing: China Standard Press, 2017.
[20] 杨永可, 肖鹏峰, 冯学智, 等. 大尺度土地覆盖数据集在中国及周边区域的精度评价[J]. 遥感学报, 2014, 18(2):453-475.
[20] Yang Y K, Xiao P F, Feng X Z, et al. Comparison and assessment of large-scale land cover datasets in China and adjacent regions[J]. Journal of Remote Sensing, 2014, 18(2):453-475.
[1] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[2] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[3] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[4] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[5] CAI Zhiling, WENG Qian, YE Shaozhen, JIAN Cairen. Remote sensing image scene classification based on Inception-V3[J]. Remote Sensing for Land & Resources, 2020, 32(3): 80-89.
[6] Pengyan HUANG, Lijing BU, Yongliang FAN. Integrating visual features in polarimetric SAR image classification[J]. Remote Sensing for Land & Resources, 2020, 32(2): 88-93.
[7] Benzuo YAO, Fang HE. Spatial and spectral feature hierarchical fusion for hyperspectral image feature extraction[J]. Remote Sensing for Land & Resources, 2019, 31(3): 59-64.
[8] Wanjun LIU, Tianhui LI, Haicheng QU. Hyperspectral similar sample classification algorithm based on Fisher criterion and TrAdaboost[J]. Remote Sensing for Land & Resources, 2018, 30(4): 41-48.
[9] Jia XU, Chunqi YUAN, Yuane CHENG, chenyu ZENG, Kang XU. Active deep learning based polarimetric SAR image classification[J]. Remote Sensing for Land & Resources, 2018, 30(1): 72-77.
[10] WU Yongliang, CHEN Jianping, YAO Shupeng, XU Bin. Application of UAV low-altitude remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 120-125.
[11] BU Lijing, HUANG Pengyan, SHEN Lu. Integrating color features in polarimetric SAR image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 59-64.
[12] LI Liang, ZHANG Yun, LI Sheng, YING Guowei. Classification of remote sensing images based on the fusion of spatial relationship[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 10-16.
[13] LI Liang, ZHOU Yaguang, LIANG Bin, XU Qing. Remote sensing image classification based on fusion of temporal features[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 36-42.
[14] LI Liang, LIANG Bin, XUE Peng, YING Guowei. Remote sensing image classification based on G statistics of object histogram[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(4): 71-76.
[15] LI Liang, YING Guowei, WEN Xuehu, HE Xin. Classification of high spatial resolution remotely sensed images by temporal feature fusion[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 91-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech