Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2017, Vol. 29 Issue (3) : 59-64     DOI: 10.6046/gtzyyg.2017.03.08
|
Integrating color features in polarimetric SAR image classification
BU Lijing1, HUANG Pengyan2, SHEN Lu1
1. School of Mapping and Geographical Science, Liaoning Technical University, Fuxin 123000, China;
2. School of Civil Engineering, Luoyang Institute of Science and Technology, Luoyang 471000, China
Download: PDF(7930 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper presents a method for combining the color feature and target decomposition characteristics so as to study the classification of polarimetric SAR. It makes up decomposition feature vector by polarimetric target decomposition and then, through the pseudo color enhancement method, obtains the false color image of polarimetric SAR data representation; after that, it extracts color histogram from the pseudo color images to make up the color feature vector, thus providing additional information for further land classification. Classification experiments were performed at different feature vectors by using RadarSat-2 polarimetric SAR image. In addition, the quantitative and qualitative comparison analysis was conducted with classification results. The experimental results show that the addition of the color feature can effectively improve the classification accuracy of polarimetric SAR images.
Keywords snow cover fraction(SCF)      spatio-temporal distribution      MODIS      DEM      Tibetan Plateau     
Issue Date: 15 August 2017
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHU Duo
DA Wa
LABA Zhuoma
XU Weixin
ZHANG Juan
Cite this article:   
CHU Duo,DA Wa,LABA Zhuoma, et al. Integrating color features in polarimetric SAR image classification[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 59-64.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2017.03.08     OR     https://www.gtzyyg.com/EN/Y2017/V29/I3/59
[1] Lee J S,Pottier E.Airborne and space-borne polarimetric SAR systems[M]//Thompson B J Lee J S,Pottier E.Polarimetric Radar Imaging:From Basics to Applications.Boca Raton,FL,USA:CRC Press,2009:13-22.
[2] Du L J,Lee J S.Polarimetric SAR image classification based on target decomposition theorem and complex Wishart distribution[C]//Proceedings of Remote Sensing for a Sustainable Future’ Geoscience and Remote Sensing Symposium.Lincoln,NE:IEEE,1996:439-441.
[3] Haralick R M,Shanmugam K,Dinstein I.Textural features for image classification[J].IEEE Transactions on Systems,Man,and Cybernetics,1973,SMC-3(6):610-621.
[4] Chen L J,Yang W,Liu Y,et al.Feature evaluation and selection for polarimetric SAR image classification[C]//Proceedings of 2010 IEEE the 10th International Conference on Signal Processing.Beijing,China:IEEE,2010:2202-2205.
[5] Shanmugan K S,Narayanan V,Frost V S,et al.Textural features for Radar image analysis[J].IEEE Transactions on Geoscience and Remote Sensing,1981,GE-19(3):153-156.
[6] Dell’Acqua F,Gamba P.Texture-based characterization of urban environments on satellite SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(1):153-159.
[7] Ersahin K,Scheuchl B,Cumming I.Incorporating texture information into polarimetric Radar classification using neural networks[C]//Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium.New York:IEEE,2004:560-563.
[8] 余 磊.极化SAR图像伪彩色增强与可视化方法研究[D].郑州:解放军信息工程大学,2012.
Yu L.Study on Methods of Pseudo-Color Enhancement and Visualization for Polarimetric SAR Image[D].Zhengzhou:The PLA Information Engineering University,2012.
[9] Manjunath B S,Ohm J R,Vasudevan V V,et al.Color and texture descriptors[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(6):703-715.
[10] Gevers T,Gijsenij A,Weijer J,et al.Color in Computer Vision:Fundamentals and Applications[M].New York,NY,USA:Wiley,2012.
[11] Huang J,Kumar S R,Mitra M,et al.Image indexing using color correlograms[C]//Proceedings of the 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Juan:IEEE,1997:762-768.
[12] 官倩宁,覃团发,帅 勤,等.综合MPEG-7中纹理和颜色特征的图像检索方法[J].计算机应用研究.2008,25(3):957-960.
Guan Q N,Qin T F,Shuai Q,et al.Image retrieval based on combined texture and color features in MPEG-7[J].Application Research of Computers,2008,25(3):957-960.
[13] Cinque L,Ciocca G,Levialdi S,et al.Color-based image retrieval using spatial-chromatic histograms[J].Image and Vision Computing,2001,19(13):979-986.
[14] Uhlmann S,Kiranyaz S.Integrating color features in polarimetric SAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(4):2197-2216.
[15] Zhang L M,Zou B,Zhang J P,et al.Classification of polarimetric SAR image based on support vector machine using multiple-component scattering model and texture features[J].EURASIP Journal on Advances in Signal Processing,2009,2010:Article ID 960831.
[16] Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20(3):273-297.
[17] Zhou X D,Zhang C H.A perceptive uniform pseudo-color coding method of SAR images[C]//Proceedings of International Conference on Radar.Shanghai,China:IEEE,2006:1-4.
[18] Swain M J,Ballard D H.Color indexing[J].International Journal of Computer Vision,1991,7(1):11-32.
[19] Jiang H B,Su Y Y,Jiao Q S,et al.Typical geologic disaster surveying in Wenchuan 8.0 earthquake zone using high resolution ground LiDAR and UAV remote sensing[C]//Proceedings of SPIE Lidar Remote Sensing for Environmental Monitoring XIV.Beijing,China:SPIE,2014:926219.
[1] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[4] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[5] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[6] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[7] MIN Wenbin, PEN Jun, Li Shiying. The evaluation of FY-3C snow products in the Tibetan Plateau[J]. Remote Sensing for Land & Resources, 2021, 33(1): 145-151.
[8] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[9] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[10] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[11] Liqiang TONG, Lixin PEI, Jienan TU, Zhaocheng GUO, Jiangkuan YU, Jinghui FAN, Dandan LI. A preliminary study of definition and classification of ice avalanche in the Tibetan Plateau region[J]. Remote Sensing for Land & Resources, 2020, 32(2): 11-18.
[12] Kaixuan LIANG, Guifang ZHANG, Haoran ZHANG. A method for extracting alluvial fan based on DEM and remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 138-145.
[13] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[14] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[15] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech