Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 81-87     DOI: 10.6046/zrzyyg.2023112
|
A spherical coordinate integration method for extracting crown volumes of individual trees based on the TLS point clouds
MA Weifeng1,2,3(), WU Xiaodong2,4, WANG Chong2, WEN Ping2, WANG Jinliang1,3, CAO Lei2, XIAO Zhenglong2
1. Faculty of Geography, Yunnan Normal University, Kunming 650500, China
2. Power China Kunming Engineering Corporation Limited, Kunming 650000, China
3. Center for Geospatial Informatin Engineering and Technology of Yunnan Province, Kunming 650500, China
4. Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
Download: PDF(4817 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Crown volumes serve as a crucial factor for surface ecological monitoring. Laser point clouds can characterize the fine-scale spatial morphologies of individual trees, providing a data basis for crown volume extraction. However, existing laser point cloud-based methods for extracting crown volumes of individual trees are sensitive to parameters and exhibit low degrees of automation. Based on the analysis of the three-dimensional morphological structures of individual trees, this study proposed a spherical coordinate integration method for extracting crown volumes of individual trees based on the terrestrial laser scanning (TLS) point clouds. First, the crown points were obtained through visual elevation threshold-based segmentation according to the elevation distributions of TLS point clouds. Then, the TLS point clouds were projected onto the spherical coordinate space for infinitesimal segmentation into triangular pyramids. Finally, the crown volumes were determined through the three-dimensional spherical coordinate integration. Six types of TLS point cloud data for individual trees were selected for tests. As indicated by the test results, the proposed method effectively considers factors like crown morphology and point cloud density, achieving a maximum absolute error of 2.33 m3 and a maximum relative error of 3.40% in the crown volume extraction of individual trees. It manifests higher extraction accuracy and stability compared to the existing methods. Therefore, this study holds significant reference value for extracting tree parameters based on TLS point clouds.

Keywords crown volume      TLS point cloud      spherical coordinate      infinitesimal element     
ZTFLH:  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Weifeng MA
Xiaodong WU
Chong WANG
Ping WEN
Jinliang WANG
Lei CAO
Zhenglong XIAO
Cite this article:   
Weifeng MA,Xiaodong WU,Chong WANG, et al. A spherical coordinate integration method for extracting crown volumes of individual trees based on the TLS point clouds[J]. Remote Sensing for Natural Resources, 2024, 36(3): 81-87.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023112     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/81
Fig.1  Technical process of extracting crown volume from TLS point cloud
Fig.2  Visualization of optimal elevation threshold segmentation for crown extraction
Fig.3  Definition of three-dimensional spherical coordinate
Fig.4  Infinitesimal elements of point cloud data
Fig.5  TLS point cloud of individual tree
实验数据 高度/m 点云数 点间距/m 树冠形态描述
桂花点云 5.03 54 557 0.011 空间球体,轮廓规则,侧视“O”型
雪松点云 10.58 127 976 0.015 三棱锥,轮廓规则,侧视倒“V”型
香樟点云 6.73 46 926 0.023 空间椭球,轮廓规则,侧视“O”型
滇朴点云 14.46 287 145 0.012 圆柱体,轮廓极不规则,侧视“X”型
银杏点云 8.28 39 667 0.026 三棱锥,轮廓较规则,侧视倒“V”型
樱花点云 6.66 36 834 0.022 三棱锥,轮廓极不规则,侧视“V”型
Tab.1  Statistics information of experimental data
实验数据 参考值 点云边界检测法 点云分层法 本文方法
提取
结果/m3
提取
结果/m3
绝对
误差/m3
相对
误差/%
提取
结果/m3
绝对
误差/m3
相对
误差/%
提取
结果/m3
绝对
误差/m3
相对
误差/%
桂花点云 12.96 13.17 0.21 1.62 12.12 -0.84 6.48 13.19 0.23 1.77
雪松点云 36.49 35.73 -0.76 2.08 37.51 1.02 2.80 36.04 -0.45 1.23
香樟点云 13.26 13.87 0.61 4.60 12.29 -0.97 7.32 13.42 0.16 1.21
滇朴点云 68.51 65.32 -3.19 4.66 71.97 3.46 5.05 66.18 -2.33 3.40
银杏点云 22.27 20.37 -1.9 8.53 21.77 -0.5 2.25 22.63 0.36 1.62
樱花点云 7.48 7.12 -0.36 4.81 8.39 0.91 12.17 7.27 -0.21 2.81
Tab.2  Extraction of canopy volume from LiDAR point cloud and accuracy analysis
Fig.6  Precision index distribution curve of crown extraction results
[1] Zhang R Y, Pang Y, Li Z Y, et al. Canopy closure estimation in a temperate forest using airborne LiDAR and Landsat ETM+ data[J]. Chinese Journal of Plant Ecology, 2016, 40(2):102-115.
[2] 马载阳, 张怀清, 李永亮, 等. 林木多样性模型及生长模拟[J]. 地球信息科学学报, 2018, 20(10):1422-1431.
doi: 10.12082/dqxxkx.2018.180101
[2] Ma Z Y, Zhang H Q, Li Y L, et al. Diversity model and growth si-mulation of tree[J]. Journal of Geo-Information Science, 2018, 20(10):1422-1431.
[3] Zou F, Li A, Wang Q. Comparative analysis of new forest resources survey methods[J]. Journal of Physics:Conference Series, 2020, 1646(1):012007.
[4] Vauhkonen J, Næsset E, Gobakken T. Deriving airborne laser scanning based computational canopy volume for forest biomass and allometry studies[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 96:57-66.
[5] 于东海, 冯仲科. 基于无人机倾斜航空影像的树冠体积测算方法[J]. 农业工程学报, 2019, 35(1):90-97.
[5] Yu D H, Feng Z K. Tree crown volume measurement method based on oblique aerial images of UAV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1):90-97.
[6] Zhu Z, Kleinn C, Nölke N. Assessing tree crown volume:A review[J]. Forestry:An International Journal of Forest Research, 2021, 94(1):18-35.
[7] Schlund M, Erasmi S, Scipal K. Comparison of aboveground biomass estimation from InSAR and LiDAR canopy height models in tropical forests[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3):367-371.
[8] 巩垠熙, 何诚, 冯仲科, 等. 基于改进Delaunay算法的树冠三维重构单木因子提取[J]. 农业机械学报, 2013, 44(2):192-199.
[8] Gong Y X, He C, Feng Z K, et al. Amended delaunay algorithm for single tree factor extraction using 3-D crown modeling[J]. Tran-sactions of the Chinese Society for Agricultural Machinery, 2013, 44(2):192-199.
[9] Lin Y, Jaakkola A, Hyypp J, et al. From TLS to VLS:Biomass estimation at individual tree level[J]. Remote Sensing, 2010, 2(8):1864-1879.
[10] 刘芳, 冯仲科, 杨立岩, 等. 基于三维激光点云数据的树冠体积估算研究[J]. 农业机械学报, 2016, 47(3):328-334.
[10] Liu F, Feng Z K, Yang L Y, et al. Estimation of tree crown volume based on 3D laser point clouds data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3):328-334.
[11] Korhonen L, Vauhkonen J, Virolainen A, et al. Estimation of tree crown volume from airborne LiDAR data using computational geometry[J]. International Journal of Remote Sensing, 2013, 34(20):7236-7248.
[12] Yan Z, Liu R, Cheng L, et al. A concave hull methodology for calculating the crown volume of individual trees based on vehicle-borne LiDAR data[J]. Remote Sensing, 2019, 11(6):623.
[13] 林松, 田林亚, 毕继鑫, 等. 三维激光扫描数据的单木树冠体积精确计算[J]. 测绘科学, 2020, 45(8):115-122.
[13] Lin S, Tian L Y, Bi J X, et al. Accurate calculation of single-tree crown volume based on 3D laser scanning data[J]. Science of Surveying and Mapping, 2020, 45(8):115-122.
[14] Xiao W, Xu S, Elberink S O, et al. Individual tree crown modeling and change detection from airborne LiDAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8):3467-3477.
[15] 程钢, 王敬宇, 杨杰, 等. 基于改进α-shape算法的三维点云树冠体积计算方法[J]. 农业机械学报, 2021, 52(5):175-183.
[15] Cheng G, Wang J Y, Yang J, et al. Calculation method of 3D point cloud canopy volume based on improved α-shape algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5):175-183.
[16] Hess C, Härdtle W, Kunz M, et al. A high-resolution approach for the spatiotemporal analysis of forest canopy space using terrestrial laser scanning data[J]. Ecology and Evolution, 2018(13): 6800-6811.
doi: 10.1002/ece3.4193 pmid: 30038776
[17] 韦雪花, 王永国, 郑君, 等. 基于三维激光扫描点云的树冠体积计算方法[J]. 农业机械学报, 2013, 44(7):235-240.
[17] Wei X H, Wang Y G, Zheng J, et al. Tree crown volume calculation based on 3-D laser scanning point clouds data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7):235-240.
[1] QIN Qiming, WU Zihua, YE Xin, WANG Nan, HAN Guhuai. Remote sensing-based exploration of coalbed methane enrichment areas:Advances in research and prospects[J]. Remote Sensing for Natural Resources, 2024, 36(3): 1-12.
[2] LI Zhixin, JI Song, FAN Dazhao, GAO Ding, LI Yongjian, WANG Ren. Building height inversion based on the complex shadow measurement method[J]. Remote Sensing for Natural Resources, 2024, 36(3): 108-116.
[3] SONG Jiaxin, LI Yikun, YANG Shuwen, LI Xiaojun. NSCT-based change detection for high-resolution remote sensing images under the framework of change vector analysis in posterior probability space[J]. Remote Sensing for Natural Resources, 2024, 36(3): 128-136.
[4] SUN Xiyong, LIU Jiafeng, FAN Jinghui, ZHANG Wenkai, SHI Lijuan, QIU Yubao, ZHU Farong. Advances in research and application of remote sensing-based snow monitoring products[J]. Remote Sensing for Natural Resources, 2024, 36(3): 13-27.
[5] LI Wei, FAN Yanguo, ZHOU Peixi. Improved Transformer-based hyperspectral image classification method for surface features: A case study of the Yellow River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 137-145.
[6] YIN Tao, SONG Yuanbao, ZHANG Wei, YUAN Huayun. Application of high-resolution remote sensing technology to research into active faults in the Maoyaba area, western Sichuan Province[J]. Remote Sensing for Natural Resources, 2024, 36(3): 174-186.
[7] ZHAO Qiang, WANG Tianjiu, WANG Tao, CHENG Sudan. InVEST model-based analysis of spatiotemporal evolution characteristics of habitat quality in the ecological green integrated demonstration area, Yangtze River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 187-195.
[8] CHEN Gang, HAO Shefeng, JIANG Bo, YU Yongxiang, CHE Zengguang, LIU Hanhu, YANG Ronghao. Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technique[J]. Remote Sensing for Natural Resources, 2024, 36(3): 196-205.
[9] SU Yue, LIU Hong, YANG Wunian, OUYANG Yuan, ZHANG Jinghua, ZHANG Tengjiao, HUANG Yong. Ecological vulnerability of highland mountain areas:A case study of Kangding City, Sichuan Province[J]. Remote Sensing for Natural Resources, 2024, 36(3): 206-215.
[10] ZHANG Ruirui, XIA Lang, CHEN Liping, DING Chenchen, ZHENG Aichun, HU Xinmiao, YI Tongchuan, CHEN Meixiang, CHEN Tianen. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 216-224.
[11] YI Zifang, ZHOU Leilei, LUO Jianlan, CAO Li. A method for hyperspectral inversion of element contents for soil-quality evaluation of cultivated land[J]. Remote Sensing for Natural Resources, 2024, 36(3): 225-232.
[12] WANG Hao, LIU Cai, CHEN Li, YANG Jinzhong, WEN Jing, SUN Yaqin, AN Na, ZHOU Yingjie, SHAO Zhitao. Correlation analysis between nonmetallic mines for building materials and social economy in the Tibet Autonomous Region[J]. Remote Sensing for Natural Resources, 2024, 36(3): 233-239.
[13] SHANG Ming, MA Jie, LI Yue, ZHAO Fei, GU Pengcheng, PAN Guangyao, LI Qian, REN Yangyang. Exploring the object-oriented land cover classification based on Landsat and GF data[J]. Remote Sensing for Natural Resources, 2024, 36(3): 240-247.
[14] LUO Wei, LI Xiuhua, QIN Huojuan, ZHANG Muqing, WANG Zeping, JIANG Zhuhui. Identification and yield prediction of sugarcane in the south-central part of Guangxi Zhuang Autonomous Region, China based on multi-source satellite-based remote sensing images[J]. Remote Sensing for Natural Resources, 2024, 36(3): 248-258.
[15] WU Dehong, HAO Lina, YAN Lihua, TANG Fengshun, ZHENG Guang. InSAR-based detection and deformation factor analysis of landslide clusters in the Jinsha River[J]. Remote Sensing for Natural Resources, 2024, 36(3): 259-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech