|
|
|
|
|
|
Exploring the object-oriented land cover classification based on Landsat and GF data |
SHANG Ming1,2( ), MA Jie2,3( ), LI Yue1, ZHAO Fei4, GU Pengcheng5, PAN Guangyao6, LI Qian2,7, REN Yangyang1,8 |
1. School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China 2. Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 3. School of Architecture and Art, Hebei University of Engineering, Handan 056038, China 4. China Satellite Communications Co., Ltd., Beijing 100190, China 5. China Land Surveying and Planning Institute, Beijing 100871, China 6. Jinglang Ecological Environment Technology (Wuhan) Co., Ltd., Wuhan 420111, China 7. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China 8. Hebei Geographic Information Group Co., Ltd., Shijiazhuang 050000, China |
|
|
Abstract This study aims to explore the object-oriented classification based on moderate-resolution remote sensing data. Using the Landsat8 OLI, Landsat5 TM, and GF1 data obtained from the northern mountainous area and the southern plain area in Hebei Province, this study compared the land cover classification effects of four classifiers: support vector machine (SVM), random forest (RF), decision tree (DT), and naive Bayes (NB). Moreover, it analyzed the impacts of critical parameters in SVM, RF, and DT on the classification results. The findings indicate that the classification results of the classifiers vary slightly in the two study areas, with their effects decreased in the order of SVM, NB, RF, and DT. The classification accuracies of SVM and DT fluctuated significantly with parameter changes. With C values not below 103 and gamma values not exceeding 10-1, SVM can yield classification accuracies above 90% in all cases. With depth values over 3, DT exhibits relatively high and stable classification accuracies. With parameter changes, RF manifests slightly varying classification accuracies with nonsignificant variation patterns. The results of this study serve as a reference for exploring the object-oriented land cover classification based on moderate-resolution remote sensing data.
|
Keywords
object-oriented classification
classifier
Landsat
GF1
land cover
|
|
Issue Date: 03 September 2024
|
|
|
[1] |
吴玉鑫, 王卷乐, 韩保民, 等. 基于时空谱特征的墨脱县森林分类方法与实现[J]. 自然资源遥感, 2023, 35(1):180-188.doi:10.6046/zrzyyg.2022016.
|
[1] |
Wu Y X, Wang J L, Han B M, et al. Forest classification for Motuo County:A method based on spatio - temporal - spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1):180-188.doi:10.6046/zrzyyg.2022016.
|
[2] |
梁晨欣, 黄启厅, 王思, 等. 基于多时相遥感植被指数的柑橘果园识别[J]. 农业工程学报, 2021, 37(24):168-176.
|
[2] |
Liang C X, Huang Q T, Wang S, et al. Identification of citrus orchard under vegetation indexes using multi-temporal remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(24):168-176.
|
[3] |
姚昆, 张存杰, 何磊, 等. 雅砻江中上游流域生态环境脆弱性动态评价及预测[J]. 国土资源遥感, 2020, 32(4):199-208.doi:10.6046/gtzyyg.2020.04.25.
|
[3] |
Yao K, Zhang C J, He L, et al. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land and Resources, 2020, 32(4):199-208.doi:10.6046/gtzyyg.2020.04.25.
|
[4] |
张雨, 明冬萍, 赵文祎, 等. 基于高分光学卫星影像的泸定地震型滑坡提取与分析[J]. 自然资源遥感, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
|
[4] |
Zhang Y, Ming D P, Zhao W Y, et al. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1):161-170.doi:10.6046/zrzyyg.2022434.
|
[5] |
杜浩国, 林旭川, 卢永坤, 等. 基于遥感影像的震后避难空间快速提取模型研究——以2021年云南漾濞M_S6.4地震为例[J]. 地震研究, 2023, 46(1):116-127.
|
[5] |
Du H G, Lin X C, Lu Y K, et al. Study on the rapid extraction model of post-earthquake shelter sites based on remote sensing images:A case study of the Yangbi MS6.4 Earthquake[J] Journal of Seismological Research, 2023, 46(1):116-127.
|
[6] |
李天驰, 王道儒, 赵亮, 等. 基于Landsat8遥感数据的西沙永乐环礁底质分类与变化分析[J]. 自然资源遥感, 2023, 35(2):70-79.doi:10.6046/zrzyyg.2022207.
|
[6] |
Li T C, Wang D R, Zhao L, et al. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2):70-79.doi:10.6046/zrzyyg.2022207.
|
[7] |
王芳, 杨武年, 王建, 等. GF-2影像城市地物分类方法探讨[J]. 测绘通报, 2019(7):12-16.
doi: 10.13474/j.cnki.11-2246.2019.0210
|
[7] |
Wang F, Yang W N, Wang J, et al. Discussion on classification methods of urban features based on GF-2 images[J]. Bulletin of Surveying and Mapping, 2019(7):12-16.
doi: 10.13474/j.cnki.11-2246.2019.0210
|
[8] |
肖武, 任河, 吕雪娇, 等. 基于无人机遥感的高潜水位采煤沉陷湿地植被分类[J]. 农业机械学报, 2019, 50(2):177-186.
|
[8] |
Xiao W, Ren H, Lyu X J, et al. Vegetation classification by using UAV remote sensing in coal mining subsidence wetland with high ground-water level[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2):177-186.
|
[9] |
Myint S W, Gober P, Brazel A, et al. Per-pixel vs.object-based classification of urban land cover extraction using high spatial resolution imagery[J]. Remote Sensing of Environment, 2011, 115(5):1145-1161.
|
[10] |
胡荣明, 魏曼, 杨成斌, 等. 以SPOT5遥感数据为例比较基于像素与面向对象的分类方法[J]. 遥感技术与应用, 2012, 27(3):366-371.
|
[10] |
Hu R M, Wei M, Yang C B, et al. Taking SPOT5 remote sensing data for example to compare pixel-based and object-oriented classification[J]. Remote Sensing Technology and Application, 2012, 27(3):366-371.
|
[11] |
王春霞, 张俊, 李屹旭, 等. 复杂环境下GF-2影像水体指数的构建及验证[J]. 自然资源遥感, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
|
[11] |
Wang C X, Zhang J, Li Y X, et al. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3):50-58.doi:10.6046/zrzyyg.2021227.
|
[12] |
陈丽萍, 孙玉军. 基于不同决策树的面向对象林区遥感影像分类比较[J]. 应用生态学报, 2018, 29(12):3995-4003.
doi: 10.13287/j.1001-9332.201812.015
|
[12] |
Chen L P, Sun Y J. Comparison of object-oriented remote sensing image classification based on different decision trees in forest area[J]. Chinese Journal of Applied Ecology, 2018, 29(12):3995-4003.
|
[13] |
董哲, 王凌, 朱西存, 等. 光谱模型结合面向对象法的山区水体提取[J]. 遥感信息, 2022, 37(4):121-127.
|
[13] |
Dong Z, Wang L, Zhu X C, et al. Water extraction in mountainous area based on spectral model and object-oriented method[J]. Remote Sensing Information, 2022, 37(4):121-127.
|
[14] |
聂倩, 七珂珂, 赵艳福. 融入超像素分割的高分辨率影像面向对象分类[J]. 测绘通报, 2021(6):44-49.
doi: 10.13474/j.cnki.11-2246.2021.0174
|
[14] |
Nie Q, Qi K K, Zhao Y F. Object-oriented classification of high-resolution image combining super-pixel segmentation[J]. Bulletin of Surveying and Mapping, 2021(6):44-49.
doi: 10.13474/j.cnki.11-2246.2021.0174
|
[15] |
黄亮, 吴春燕, 李小祥, 等. 基于弱监督语义分割的灯盏花无人机遥感种植信息提取[J]. 农业机械学报, 2022, 53(4):157-163,217.
|
[15] |
Huang L, Wu C Y, Li X X, et al. Extraction of erigeron breviscapus planting information by unmanned aerial vehicle remote sensing based on weakly supervised semantic segmentation[J]. Transactions of the Chinese Society of Agricultural Machinery, 2022, 53(4):157-163,217.
|
[16] |
尚明. 中分辨率遥感数据面向对象分类的影响要素研究[D]. 北京: 中国科学院大学, 2018.
|
[16] |
Shang M. Research on influence factors of object-based classification of medium resolution remote sensing data[D]. Beijing: University of Chinese Academy of Sciences, 2018.
|
[17] |
Shang M, Wang S X, Zhou Y, et al. Effects of training samples and classifiers on classification of Landsat8 imagery[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(9):1333-1340.
|
[18] |
Ma L, Li M C, Ma X X, et al. A Review of supervised object based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:277-293.
|
[19] |
Qian Y G, Zhou W Q, Yan J L, et al. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery[J]. Remote Sensing, 2014, 7(1):153-168.
|
[20] |
Shang M, Wang S X, Zhou Y, et al. Object-based image analysis of suburban landscapes using Landsat8 imagery[J]. International Journal of Digital Earth, 2019, 12(6):720-736.
|
[21] |
Faris H, Hassonah M A, Al-Zoubi A M, et al. A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture[J]. Neural Computing and Applications, 2018, 30(8):2355-2369.
|
[22] |
杜科林, 官云兰, 裴东东, 等. 基于PSO参数优化支持向量机的湿地遥感分类——以鄱阳湖部分区域为例[J]. 江西科学, 2018, 36(1):66-72,129.
|
[22] |
Du K L, Guan Y L, Pei D D, et al. Remote sensing classification of Poyang Lake wetland based on PSO parameter optimized support vector machine[J]. Jiangxi Science, 2018, 36(1):66-72,129.
|
[23] |
Ma L, Cheng L, Li M C, et al. Training set size,scale,and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102:14-27.
|
[24] |
石彩霞, 赵传钢, 庞蕾. 基于超像素统计量的随机森林遥感图像分类[J]. 计算机应用研究, 2018, 35(12):3798-3802.
|
[24] |
Shi C X, Zhao C G, Pang L. Research on random forest remote sensing image classification based on superpixel statistics[J]. Application Research of Computers, 2018, 35(12):3798-3802.
|
[25] |
李恒凯, 王利娟, 肖松松. 基于多源数据的南方丘陵山地土地利用随机森林分类[J]. 农业工程学报, 2021, 37(7):244-251.
|
[25] |
Li H K, Wang L J, Xiao S S. Random forest classification of land use in hilly and mountaineous areas of southern China using multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):244-251.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|