Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 196-205     DOI: 10.6046/zrzyyg.2023101
|
Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technique
CHEN Gang1(), HAO Shefeng1, JIANG Bo1, YU Yongxiang1, CHE Zengguang1, LIU Hanhu2(), YANG Ronghao2
1. Geological Survey of Jiangsu Province, Nanjing 210018, China
2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
Download: PDF(21757 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Landslides may cause the loss of lives and property, and an accurate and complete map showing the spatial distribution of landslides and the determination of landslide susceptibility areas assist in guiding the optimization of the production, living, and ecological spaces. However, landslide investigations are complicated by dense vegetation. LiDAR technology enables the presentation of actual terrain features, thereby achieving landslide identification in densely vegetated areas. This study obtained the LiDAR point cloud data of the study area through ground-imitating flight and then built a digital elevation model (DEM) through data processing. Then, based on mountain shadow analysis, color-enhanced presentation, and 3D scene simulation, the locations and scales of existing landslides in the study area were identified. The field verification revealed an interpretation accuracy of landslides of up to 86.4%. For the assessment of landslide susceptibility areas, this study, with existing landslides as samples, delineated landslide susceptibility areas through remote sensing classification for the first time. Specifically, images were synthesized using the landslide-related elevations, slopes, and surface undulations, and then landslide susceptibility areas were determined using the support vector machine (SVM) classification method. The analysis of the inspection samples reveals a landslide identification accuracy of 81.91%. The results show that the image identification based on high-accuracy LiDAR data and visually enhanced images allows for the delineation of small landslides and that the SVM classification method enables the accurate location of landslide susceptibility areas. This study provides a basis for the future planning and optimization of the production, living, and ecological spaces.

Keywords LiDAR      landslide      mountain shadow      SVM      landslide susceptibility area     
ZTFLH:  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gang CHEN
Shefeng HAO
Bo JIANG
Yongxiang YU
Zengguang CHE
Hanhu LIU
Ronghao YANG
Cite this article:   
Gang CHEN,Shefeng HAO,Bo JIANG, et al. Identification and assessment of small landslides in densely vegetated areas based on airborne LiDAR technique[J]. Remote Sensing for Natural Resources, 2024, 36(3): 196-205.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023101     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/196
Fig.1  Geographical location of the study area
Fig.2  LiDAR data collection and processing method
Fig.3  Effect of extracting original point clouds and ground points in the study area
Fig.4  Light simulation direction in bidirectional and multi-directional mountain shadow maps
Fig.5  Schematic diagram of the basic idea of support vector machine
Fig.6  Shadow images of mountains under different production methods
Fig.7-1  Color enhanced display effect
Fig.7-2  Color enhanced display effect
Fig.8  Landslide photos during field exploration in the study area
Fig.9  Remote Sensing Interpretation Characteristics of Small Landslides
Fig.10  Distribution of landslide prone areas
[1] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报, 2022, 51(6):885-896.
doi: 10.11947/j.AGCS.2022.20220132
[1] Zhang Q, Zhao C Y, Chen X R. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6):885-896.
doi: 10.11947/j.AGCS.2022.20220132
[2] 杨长江, 易祎, 赵蓉. 基于Sentinel-1数据的时序InSAR技术在滑坡监测方面的应用——以巴东地区为例[J]. 科技创新与生产力, 2017, 279(4):55-58,63.
[2] Yang C J, Yi Y, Zhao R. Monitoring landslide movements using time series InSAR with sentinel-1:Application to Badong area[J]. Sci-Tech Innovation and Productivity, 2017, 279(4):55-58,63.
[3] 李显巨. 基于LiDAR技术的复杂地质环境区滑坡识别研究[D]. 武汉: 中国地质大学, 2012.
[3] Li X J. Research of the landslide recognition based on LiDAR technology in the complex geological environment area master candidate[D]. Wuhan: China University of Geosciences, 2012.
[4] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(7):957-966.
[4] Xu Q, Dong X J, Li W L. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966.
[5] 董秀军, 许强, 佘金星, 等. 九寨沟核心景区多源遥感数据地质灾害解译初探[J]. 武汉大学学报(信息科学版), 2020, 45(3):432-441.
[5] Dong X J, Xu Q, She J X, et al. Preliminary study on interpretation of geological hazards in Jiuzhaigou based on multi-source remote sensing data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):432-441.
[6] Chigira M, Duan F, Yagi H, et al. Using an airborne laser scanner for the identification of shallow landslides and susceptibility assessment in an area of ignimbrite overlain by permeable pyroclastics[J]. Landslides, 2004, 1(3):203-209.
[7] Haneberg W C, Creighton A L, Medley E W, et al. Use of LiDAR to assess slope hazards at the Lihir gold mine,Papua New Guinea[C]// International Conference on Landslide Risk Management,Vancouver,British Columbia, 2005:1-10.
[8] Razak K A, Santangelo M, Van Westen C J, et al. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment[J]. Geomorphology, 2013, 190:112-125.
[9] Ju L Y, Zhang L M, Xiao T. Power laws for accurate determination of landslide volume based on high-resolution LiDAR data[J]. Engineering Geology, 2023, 312:106935.
[10] 邵延秀, 张波, 邹小波, 等. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质, 2017, 39(6):1185-1197.
doi: 10.3969/j.issn.0253-4967.2017.06.007
[10] Shao Y X, Zhang B, Zou X B, et al. Application of UAVLS to rapid geological surveys[J]. Seismology and Geology, 2017, 39(6):1185-1197.
[11] 王绚, 范宣梅, 杨帆, 等. 植被茂密山区地质灾害遥感解译方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(11):1771-1781.
[11] Wang X, Fan X M, Yang F, et al. Remote sensing interpretation method of geological hazards in lush mountainous area[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11):1771-1781.
[12] 佘金星, 许强, 杨武年, 等. 九寨沟地震地质灾害隐患早期识别与分析研究[J]. 工程地质学报, 2023, 31(1):207-216.
[12] She J X, Xu Q, Yang W N, et al. Early identification and analysis of earthquake and geological hazards in Jiuzhaigou[J]. Journal of Engineering Geology, 2023, 31(1):207-216.
[13] 彭艺伟, 董琦, 田冲, 等. 基于机载激光雷达的地质灾害识别关键技术及应用研究[J]. 安全与环境工程, 2021, 28(6):100-108.
[13] Peng Y W, Dong Q, Tian C, et al. Research on key technologies and application of geological hazard identification based on airborne LiDAR[J]. Safety and Environmental Engineering, 2021, 28(6):100-108.
[14] 郭晨, 许强, 董秀军, 等. 复杂山区地质灾害机载激光雷达识别研究[J]. 武汉大学学报(信息科学版), 2021, 46(10):1538-1547.
[14] Guo C, Xu Q, Dong X J, et al. Geohazard recognition by airborne LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10):1538-1547.
[15] 邓博, 张会, 柏君, 等. 利用机载LiDAR的深圳斜坡类地质灾害危险性评价[J/OL]. 武汉大学学报(信息科学版):1-18 [2023-03-01].https://doi.org/10.13203/j.whugis20220141.
url: https://doi.org/10.13203/j.whugis20220141
[15] Deng B, Zhang H, Bai J, et al. Hazard evaluation of the slope in Shenzhen based on airborne LiDAR data[J/OL]. Geomatics and Information Science of Wuhan University:1-18 [2023-03-01].https://doi.org/10.13203/j.whugis20220141.
url: https://doi.org/10.13203/j.whugis20220141
[16] Mark R K. A multidirectional,oblique-weighted,shaded-relief image of the island of Hawaii[R] Open-file Report, 1992.
[17] Chiba T, Kaneta S, Suzuki Y. Red relief image map: New visualization method for three dimensional data[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2008, 37(b2): 1071-1076
[18] 王涛, 吴树仁, 石菊松. 国际滑坡风险评估与管理指南研究综述[J]. 地质通报, 2009, 28(8):1006-1019.
[18] Wang T, Wu S R, Shi J S. A review of international landslide risk assessment and management guidelines[J]. Geological Bulletin of China, 2009, 28(8):1006-1019.
[19] 邹富宝, 付卓, 樊风雷, 等. 基于频率比与AHP模型的西藏东部地区滑坡易发性评价[J]. 自然灾害学报, 2023, 32(2):235-242.
[19] Zou F B, Fu Z, Fan F L, et al. Evaluation of landslide susceptibility in eastern Tibet based on frequency ratio and AHP model[J]. Journal of Natural Disasters. 2023, 32(2):235-242.
[20] 刘纪平, 梁恩婕, 徐胜华, 等. 顾及样本优化选择的多核支持向量机滑坡灾害易发性分析评价[J]. 测绘学报, 2022, 51(10):2034-2045.
doi: 10.11947/j.AGCS.2022.20220326
[20] Liu J P, Liang E J, Xu S H, et al. Multi-kernel support vector machine considering sample optimization selection for analysis and evaluation of landslide disaster susceptibility[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10):2034-2045.
doi: 10.11947/j.AGCS.2022.20220326
[21] 张玺国, 周雄冬, 徐梦珍, 等. 西藏地质灾害易发性及对水能开发适宜度影响[J]. 地理学报, 2022, 77(7):1603-1614.
doi: 10.11821/dlxb202207003
[21] Zhang X G, Zhou X D, Xu M Z, et al. Distribution of hydropower development suitability in Tibet in the face of geological hazard susceptibility[J]. Acta Geographica Sinica, 2022, 77(7):1603-1614.
doi: 10.11821/dlxb202207003
[22] 成淑艳, 曹生奎, 曹广超, 等. 基于高分辨率遥感影像的青海湖沙柳河流域土地覆盖监督分类方法对比[J]. 水土保持通报, 2018, 38(5):261-268,353.
[22] Cheng S Y, Cao S K, Cao G C, et al. Comparisons of supervised classification methods for land cover based on high spatial resolution remote sensing images in Shaliu River basin of Qinghai Lake[J]. Bulletin of Soil and Water Conservation, 2018, 38(5):261-268,353.
[23] 李鹏, 蒋宁桑, 封志明, 等. 基于支持向量机的老挝丰沙里省新开辟刀耕火种遥感监测及其空间特征[J]. 遥感学报, 2022, 26(11):2329-2343.
[23] Li P, Jiang N S, Feng Z M, et al. Freshly-opened swidden mapping using support vector machine (SVM)and spatial characteristics in Phongsaly Province,Laos[J]. National Remote Sensing Bulletin, 2022, 26(11): 2329-2343.
[24] Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[25] 薛永安, 邹友峰, 张文志, 等. 基于SVM的地下采煤区沉陷灾害发育敏感性分区研究[J]. 煤田地质与勘探, 2022, 50(10):108-118.
[25] Xue Y A, Zou Y F, Zhang W Z, et al. SVM-based sensitivity zoning of subsidence disaster development in the underground coal mining areas[J]. Coal Geology and Exploration, 2022, 50(10): 108-118.
[26] 童立强, 郭兆成. 典型滑坡遥感影像特征研究[J]. 国土资源遥感, 2013, 25(1):86-92.doi: 10.6046/gtzyyg.2013.01.16.
[26] Tong L Q, Guo Z C. A study of remote sensing image features of typical landslides[J]. Remote Sensing for Land and Resources, 2013, 25(1):86-92.doi: 10.6046/gtzyyg.2013.01.16.
[1] WU Dehong, HAO Lina, YAN Lihua, TANG Fengshun, ZHENG Guang. InSAR-based detection and deformation factor analysis of landslide clusters in the Jinsha River[J]. Remote Sensing for Natural Resources, 2024, 36(3): 259-266.
[2] BAI Shi, TANG Panpan, MIAO Zhao, JIN Caifeng, ZHAO Bo, WAN Haoming. Information extraction of landslides based on high-resolution remote sensing images and an improved U-Net model: A case study of Wenchuan, Sichuan[J]. Remote Sensing for Natural Resources, 2024, 36(3): 96-107.
[3] ZHANG Lijun, HE Sirui, ZHANG Jiandong, PENG Guangxiong, XU Zhibin, XIE Jiancheng, TANG Kai, BU Jiancai. Identification of landslide hazards based on multi-source remote sensing technology:A case study of the Changli area in Hunan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 173-187.
[4] YANG Fan, MA Zhigang, WEN Yan, Dong Jie, JIANG Qinghui. Monitoring a landslide with a multi-deformation magnitude based on the phase and amplitude information of SAR images: A case study of the Baige landslide in Jinsha River[J]. Remote Sensing for Natural Resources, 2024, 36(2): 257-267.
[5] CAI Jian’ao, MING Dongping, ZHAO Wenyi, LING Xiao, ZHANG Yu, ZHANG Xingxing. Integrated remote sensing-based hazard identification and disaster-causing mechanisms of landslides in Zayu County[J]. Remote Sensing for Natural Resources, 2024, 36(1): 128-136.
[6] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[7] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[8] ZHAO Huawei, ZHOU Lin, TAN Minglun, TANG Minggao, TONG Qinggang, QIN Jiajun, PENG Yuhui. Early identification of potential landslides for the Sichuan-Chongqing power grid based on optical remote sensing and SBAS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(4): 264-272.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] ZHANG Yu, MING Dongping, ZHAO Wenyi, XU Lu, ZHAO Zhi, LIU Ran. The extraction and analysis of Luding earthquake-induced landslide based on high-resolution optical satellite images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 161-170.
[11] LI Chenhui, HAO Lina, XU Qiang, WANG Yi, YAN Lihua. Object-oriented hierarchical identification of earthquake-induced landslides based on high-resolution remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 74-80.
[12] ZHAO Lianjie, WU Mengquan, ZHENG Longxiao, LUAN Shaopeng, ZHAO Xianfeng, XUE Mingyue, LIU Jiayan, LIU Chenxi. Temporal-spatial changes and driving analysis of the northern shorelines of Jiaodong Peninsula[J]. Remote Sensing for Natural Resources, 2022, 34(4): 87-96.
[13] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[14] HE Peng, YAN Yuyan, WEN Yan, MA Zhigang, JIAO Qisong, GUO Zhaocheng, MO You. Application of the airborne LiDAR technology in the identification of flat landslides and their crack grooves[J]. Remote Sensing for Natural Resources, 2022, 34(4): 307-316.
[15] DONG Jihong, MA Zhigang, LIANG Jingtao, LIU Bin, ZHAO Cong, ZENG Shuai, YAN Shengwu, MA Xiaobo. A comparative study of the identification of hidden landslide hazards based on time series InSAR techniques[J]. Remote Sensing for Natural Resources, 2022, 34(3): 73-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech