Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 76-81     DOI: 10.6046/zrzyyg.2023259
|
A method for field inspection of natural resource surveys using UAV-based geographic information video technology
WANG Yunkai1(), LI Anmin1, LIN Nan2, CAO Yijie3
1. Jiangsu Institute of Surveying and Mapping of Geology, Nanjing 211102, China
2. China MCC17 Group Co., Ltd., Maanshan 243000, China
3. Jiangsu Tuojia Engineering Design and Research Co., Ltd., Nanjing 211100,China
Download: PDF(3024 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Field verification of natural resources is a vital part of natural resource surveys. To address issues such as low efficiency and security risks encountered in traditional field verification methods, this study developed an application scheme for field verification utilizing UAV-based geographic information video technology. First, this study examined the characteristics of UAV-based geographic information video technology. Based on these characteristics, as well as the requirements of field verification, the features for the field verification were categorized into two types: land use classification and measurement assessment. Subsequently, the UAV-based geographic information video acquisition was designed for each type. The collected videos were then combined with a geographic information system (GIS) platform for feature evaluation and measurement. The application scheme was tested based on production practices. The test results indicate that the proposed scheme can improve the efficiency of the field inspection, with the measurement accuracy meeting the demand for actual production needs. Furthermore, the scheme can overcome the limitations of ground-based photography and reduce safety risks.

Keywords UAV      field verification      natural resource surveys      geographic information video     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunkai WANG
Anmin LI
Nan LIN
Yijie CAO
Cite this article:   
Yunkai WANG,Anmin LI,Nan LIN, et al. A method for field inspection of natural resource surveys using UAV-based geographic information video technology[J]. Remote Sensing for Natural Resources, 2025, 37(1): 76-81.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023259     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/76
Fig.1  The general guidelines
Fig.2  Illustration of the UAV integration relationship
Fig.3  Flight route
序号 “三调”
地类
无人地理信息
视频判断地类
人工实地
核查结果
1 公园与绿地 公园绿地 公园绿地
2 旱地 旱地 旱地
3 科教文卫用地 幼儿园用地(幼儿园游乐设施) 幼儿园用地
4 科教文卫用地 中小学用地(沿用原地类判断) 中小学用地
5 科教文卫用地 中小学用地(沿用原地类判断) 中小学用地
6 其他草地 殡葬用地 殡葬用地
7 其他草地 殡葬用地 殡葬用地
8 其他草地 殡葬用地 殡葬用地
9 其他林地 其他草地 其他草地
10 其他林地 乔木林地 乔木林地
11 其他林地 旱地 旱地
12 其他林地 其他草地 其他草地
13 设施农用地 畜禽养殖设施建设用地(设施内容) 畜禽养殖设施建设用地
14 设施农用地 畜禽养殖设施建设用地(养鸭) 畜禽养殖设施建设用地
15 设施农用地 畜禽养殖设施建设用地(设施内容) 畜禽养殖设施建设用地
16 设施农用地 畜禽养殖设施建设用地(设施内容) 畜禽养殖设施建设用地
17 设施农用地 种植设施建设用地 种植设施建设用地
18 水田 种植设施建设用地(大棚) 种植设施建设用地
19 水田 其他草地 其他草地
20 物流仓储用地 物流仓储用地(沿用原地类判断) 物流仓储用地
21 竹林地 竹林地 竹林地
Tab.1  Comparison of the results of patch classification judgment
Fig.4  Screenshots of UAV geographic information video
Fig.5  Comparison of image spot segmentation results
序号 类别 比较点
个数/个
误差最
大值/m
误差最
小值/m
中误
差/m
精度
要求/m
1 单张影像覆盖 22 2.81 0.57 1.57 2.5
2 多张影像覆盖 26 1.99 0.25 0.82 2.5
Tab.2  Statistical table of point position accuracy comparison
序号 类别 比较面
积个数/个
误差最
大值/m2
误差最
小值/m2
中误差/
m2
1 单张影像覆盖 25 14.92 0.65 1.97
2 多张影像覆盖 23 4.16 0.05 1.78
Tab.3  Statistical table of area accuracy comparison
[1] 聂玉文, 王欢欢, 符太成, 等. 国土空间规划下用地分类体系探究[J]. 住宅与房地产, 2019(19): 73-74.
[1] Nie Y W, Wang H H, Fu T C, et al. Study on land classification system under land spatial planning[J]. Housing and Real Estate, 2019(19): 73-74.
[2] 杨笑尘. 土地变更调查外业核查系统设计与实现[D]. 西安: 长安大学, 2018.
[2] Yang X C. Design and implementation of land change survey field verification system[D]. Xi’an: Changan University, 2018.
[3] 钟娜娜, 宗恒康, 胡振彪, 等. 第三次全国国土调查外业核查系统设计与实现[J]. 城市勘测, 2020(6): 38-42.
[3] Zhong N N, Zong H K, Hu Z B, et al. Design and implementation of the third national land survey field verification system[J]. Urban Geotechnical Investigation and Surveying, 2020(6): 38-42.
[4] 陈德权. 微服务架构的自然资源外业核查系统设计与实现[J]. 地理空间信息, 2021, 19(5): 123-126, 6.
[4] Chen D Q. Design and implementation of natural resource field verification system based on microservice architecture[J]. Geospatial Information, 2021, 19(5): 123-126, 6.
[5] 孙新博, 李英成, 王凤, 等. 无人机地理信息视频系统的设计与实现[J]. 测绘科学, 2018, 43(10): 131-136, 156.
[5] Sun X B, Li Y C, Wang F, et al. Design and implementation of UAV geographic information video system[J]. Science of Surveying and Mapping, 2018, 43(10): 131-136, 156.
[6] 王磊, 周鑫鑫, 吴长彬. 无人机实时视频与三维地理场景融合[J]. 测绘通报, 2021(12): 33-37, 43.
doi: 10.13474/j.cnki.11-2246.2021.368
[6] Wang L, Zhou X X, Wu C B. Fusion method of UAV real-time video and 3D geographical scene[J]. Bulletin of Surveying and Mapping, 2021(12): 33-37, 43.
doi: 10.13474/j.cnki.11-2246.2021.368
[7] 孟静, 王凤, 李玉琳, 等. 应急测绘视频帧与GIS系统匹配技术[J]. 遥感信息, 2022, 37(2): 91-96.
[7] Meng J, Wang F, Li Y L, et al. Matching technology between emergency mapping video frame and GIS system[J]. Remote Sensing Information, 2022, 37(2): 91-96.
[8] 任丽艳, 李英成, 肖金城, 等. 测绘无人机灾害现场多源数据集成与智能服务[J]. 测绘科学, 2020, 45(12): 139-144.
[8] Ren L Y, Li Y C, Xiao J C, et al. Multi-source data integration and intelligent service of surveying and mapping UAV for disaster scene[J]. Science of Surveying and Mapping, 2020, 45(12): 139-144.
[9] 陈光, 郑宏伟. 三维场景中无人机地理视频数据的集成方法[J]. 地理与地理信息科学, 2017, 33(1): 40-43, 72.
[9] Chen G, Zheng H W. Integration method of UAV GeoVideo data model in 3D scene[J]. Geography and Geo-Information Science, 2017, 33(1): 40-43, 72.
[10] 张雪萍. POS辅助航空摄影测量直接对地目标定位的关键技术研究[D]. 武汉: 武汉大学, 2010.
[10] Zhang X P. Research on key technologies of direct georeferencing in POS-supported aerial photogrammetry[D]. Wuhan: Wuhan University, 2010.
[11] 王佩军, 徐亚明. 摄影测量学: 测绘工程专业[M]. 3版. 武汉: 武汉大学出版社, 2016.
[11] Wang P J, Xu Y M. Geo-spatial information science[M]. 3rd ed. Wuhan: Wuhan University Press, 2016.
[12] 姚娜. 低空无人机载组合宽角相机关键技术研究与性能分析[D]. 武汉: 武汉大学, 2013.
[12] Yao N. Research on key technologies of low altitude UAV borne multi-head and wide-angle composite cameras and their performance evaluation[D]. Wuhan: Wuhan University, 2013.
[13] 王贤. 基于POS系统的数字正射影像制作研究[D]. 绵阳: 西南科技大学, 2018.
[13] Wang X. Research on making digital orthophoto map based on position and orientation system[D]. Mianyang: Southwest University of Science and Technology, 2018.
[14] 叶晴旻. 大视场相机畸变校正相关技术的研究[D]. 杭州: 浙江大学, 2016.
[14] Ye Q M. Research on related technology of correction of distortion of the large view camera[D]. Hangzhou: Zhejiang University, 2016.
[15] 李彤彤. 双目视觉系统的标定及畸变校正技术研究[D]. 长春: 吉林大学, 2019.
[15] Li T T. Research on calibration and distortion correction technique of binocular vision system[D]. Changchun: Jilin University, 2019.
[16] 樊敏, 秦健, 李云响, 等. ArcGIS数字化地质图校正及配准[J]. 化工矿产地质, 2014, 36(3): 185-189.
[16] Fan M, Qin J, Li Y X, et al. ArcGIS digital geological map correction and registration[J]. Geology of Chemical Minerals, 2014, 36(3): 185-189.
[17] 李伟. 基于数字视频数据的地理信息提取与空间分析研究[D]. 焦作: 河南理工大学, 2015.
[17] Li W. Geographic information extracting and spatial analysis based on video data[D]. Jiaozuo: Henan Polytechnic University, 2015.
[18] 王凯. 一种无人机铁路巡线视频定位方法[J]. 科技和产业, 2022, 22(1): 323-328.
[18] Wang K. A location method for UAV railway patrol video[J]. Science Technology and Industry, 2022, 22(1): 323-328.
[1] SUN Xinchao, LUO Qifeng, HE Zongyou, ZHANG Aoli, CAI Guolin. Exploration of curved UAV flight path design methods for banded aerial survey areas[J]. Remote Sensing for Natural Resources, 2025, 37(1): 68-75.
[2] ZHANG Ruirui, XIA Lang, CHEN Liping, DING Chenchen, ZHENG Aichun, HU Xinmiao, YI Tongchuan, CHEN Meixiang, CHEN Tianen. Identifying discolored trees inflected with pine wilt disease using DSSN-based UAV remote sensing[J]. Remote Sensing for Natural Resources, 2024, 36(3): 216-224.
[3] SONG Qi, GAO Xiaohong, SONG Yuting, LI Qiaoli, CHEN Zhen, LI Runxiang, ZHANG Hao, CAI Sangjie. Estimation of soil organic carbon content in farmland based on UAV hyperspectral images: A case study of farmland in the Huangshui River basin[J]. Remote Sensing for Natural Resources, 2024, 36(2): 160-172.
[4] WANG Zhenhua, TAN Zhilian, LI Jing, CHANG Yingli. Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 10-16.
[5] CHEN Kai, WANG Chun, DAI Wen, SHENG Yehua, LIU Aili, TANG Guoan. Factors influencing the terrain modeling accuracy of UAV photogrammetry based on Monte Carlo tests of control points[J]. Remote Sensing for Natural Resources, 2023, 35(3): 107-115.
[6] DONG Shuangfa, FAN Xiao, SHI Haigang, XU Liping, ZHANG Xinyi. Study on distribution of thermal discharge in Fuqing nuclear power plant based on Landsat8 and UAV[J]. Remote Sensing for Natural Resources, 2022, 34(3): 112-120.
[7] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
[8] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[9] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[10] ZHAO Xiaowei, HUANG Yang, WANG Yongqiang, CHU Ding. Estimation of maize seedling number based on UAV multispectral data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 106-114.
[11] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[12] LI Yang, YUAN Lin, ZHAO Zhiyuan, ZHANG Jinlei, WANG Xianye, ZHANG Liquan. Inversion of tidal flat topography based on unmanned aerial vehicle low-altitude remote sensing and field surveys[J]. Remote Sensing for Natural Resources, 2021, 33(3): 80-88.
[13] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[14] BAI Junlong, WANG Zhangqiong, YAN Haitao. A K-means clustering-guided threshold-based approach to classifying UAV remote sensed images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 114-120.
[15] XIONG Yujiu, ZHAO Shaohua, YAN Chunhua, QIU Gouyu, SUN Hua, WANG Yanlin, QIN Longjun. A comparative study of methods for monitoring and assessing urban green space resources at multiple scales[J]. Remote Sensing for Land & Resources, 2021, 33(1): 54-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech