Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 10-16     DOI: 10.6046/zrzyyg.2022425
|
Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model
WANG Zhenhua1,2(), TAN Zhilian1,2, LI Jing1,2, CHANG Yingli1()
1. College of Information Technology,Shanghai Ocean University,Shanghai 201306,China
2. Key Laboratory of Marine Environmental Survey Technology and Application, Ministry of Natural Resources,Guangzhou 510000,China
Download: PDF(3278 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Nearshore monitoring covers natural environments and human activities. High-accuracy identification of nearshore monitoring targets significantly influences the healthy development of the marine economy, the ecological protection of marine environments, and the prevention and mitigation of marine disasters. The nearshore monitoring targets feature multiple types, diverse sizes, and uncertainty. The existing identification models suffer low accuracy, low efficiency, and severe omission of small targets. This study proposed an identification model (Re-YOLOX) for nearshore monitoring targets by improving YOLOX using a learnable image resizer model (the Resizer model). First, the model training was intensified using the Resizer model to improve the feature learning and expression abilities and the recall rate of the Re-YOLOX model. Then, the feature pyramid fusion structure of the YOLOX algorithm was improved to reduce the omission of small targets in the identification. With the nearshore video data from UAV monitoring as the data set and cars, ships, and piles as monitoring targets, this study compared the Re-YOLOX model with other models, including CenterNet, Faster R-CNN, YOLOv3, and YOLOX. The results show that the Re-YOLOX model yielded a mean average precision of 94.23%, a mean recall of 91.99%, and a mean F1 score of 89.67%, all of which were higher than those of the other models. In summary, the Re-YOLOX model can improve the target identification accuracy while ensuring target identification efficiency, thus providing technical support for managing nearshore seas.

Keywords nearshore sea      target identification      YOLOX algorithm      UAV monitoring data     
ZTFLH:  TP79  
  TP183  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenhua WANG
Zhilian TAN
Jing LI
Yingli CHANG
Cite this article:   
Zhenhua WANG,Zhilian TAN,Jing LI, et al. Re-YOLOX: A YOLOX model for identifying nearshore monitoring targets improved based on the Resizer model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 10-16.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022425     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/10
Fig.1  Structure diagram of target recognition model (Re-YOLOX)
Fig.2  Schematic diagram monitoring data in offshore area
Fig.3  Distribution of detection target sizes
Fig.4  Comparison of Loss curve
模型 P/% R/% mAP/% mR/% mF1/% FPS/
(张·s-1)
车辆 堆砌物 船只 车辆 堆砌物 船只
YOLOX 94.09 86.58 75.24 83.09 87.16 83.16 89.79 84.47 84.67 16.36
YOLOX+resizer 88.69 88.27 79.56 89.87 88.23 88.10 91.93 88.73 87.04 15.44
YOLOX+add 89.65 89.49 80.34 90.32 91.03 89.13 93.28 90.16 88.24 14.32
Re-YOLOX 88.91 92.00 81.31 91.16 93.24 91.58 94.23 91.99 89.67 13.91
Tab.1  Test results of ablation
图像序号 标签 CenterNet Faster R-CNN YOLOv3 Re-YOLOX
a
b
c
d
Tab.2  Target recognition results of different models
模型 P/% R/% mAP/% mR/% mF1/% FPS/
(张·s-1)
车辆 堆砌物 船只 车辆 堆砌物 船只
CenterNet 95.38 97.56 96.72 51.07 54.05 62.11 80.48 55.74 71.00 14.38
Faster R-CNN 46.42 74.84 77.00 36.35 78.38 81.05 59.02 65.26 65.67 7.41
YOLOv3 77.38 73.87 73.63 72.71 61.19 52.34 68.28 58.04 67.67 21.44
Re-YOLOX 88.91 92.00 81.31 91.16 93.24 91.58 94.23 91.99 89.67 13.91
Tab.3  Comparison of evaluation indicators of different models
[1] 何荣, 石海明, 屠建波, 等. 海洋工程对天津近岸海域环境的影响研究[J]. 海洋开发与管理, 2019, 36(5):63-66.
[1] He R, Shi H M, Tu J B, et al. The influence of ocean engineering in the coastal area of Tianjin[J]. Ocean Development and Management, 2019, 36(5):63-66.
[2] 周扬. 基于深度学习的目标跟踪算法研究[D]. 扬州: 扬州大学, 2019.
[2] Zhou Y. Research on target tracking algorithm based on deep learning[D]. Yangzhou: Yangzhou University, 2019.
[3] 范航恺. 基于卷积神经网络的序列特异性预测研究[D]. 昆明: 云南大学, 2016.
[3] Fan H K. Prediction of sequence specificity based on convolutional neural network[D]. Kunming: Yunnan University, 2016.
[4] LeCun Y, Bottou L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791 url: http://ieeexplore.ieee.org/document/726791/
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,OH,USA, 2014:580-587.
[6] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),Las Vegas,NV,USA, 2016:779-788.
[7] 关克平, 韩笑, 蒋宇. 基于tbd策略的船舶交通流视觉图像统计方法[J]. 上海海事大学学报, 2021, 42(2): 40-44,95.
[7] Guan K P, Han X, Jiang Y. Visual image statistics method of ship traffic flow based on tbd strategy[J]. Journal of Shanghai Maritime University, 2021, 42(2): 40-44,95.
[8] 许延雷, 梁继然, 董国军, 等. 基于改进CenterNet的航拍图像目标检测算法[J]. 激光与光电子学进展, 2021, 58(20): 192-201.
[8] Xu Y L, Liang J R, Dong G J, et al. Target detection algorithm for aerial images based on improved CenterNet[J]. Laser and Optoelectronics Progress, 2021, 58(20): 192-201.
[9] 岳邦铮, 韩松. 基于改进 Faster R-CNN 的 SAR 船舶目标检测方法[J]. 计算机与现代化, 2019, 7(9):90-95.
[9] Yue B Z, Han S. A SAR ship detection method based on improved Faster R-CNN[J]. Computer and Modernization, 2019, 7(9):90-95.
[10] 聂鑫, 刘文, 吴巍. 复杂场景下基于增强YOLOv3的船舶目标检测[J]. 计算机应用, 2020, 40(9): 2561-2570.
doi: 10.11772/j.issn.1001-9081.2020010097
[10] Nie X, Liu W, Wu W. Ship target detection based on enhanced YOLOv3 in complex scenes[J]. Journal of Computer Applications, 2020, 40(9): 2561-2570.
[11] 齐亮, 李邦昱, 陈连凯. 基于改进的Faster R-CNN船舶目标检测算法[J]. 中国造船, 2020, 61(s1): 40-51.
[11] Qi L, Li B Y, Chen L K. Ship target detection algorithm based on improved Fast R-CNN[J]. Shipbuilding of China, 2020, 61(s1):40-51.
[12] 盛明伟, 李俊, 秦洪德, 等. 基于改进YOLOv3的船舶目标检测算法[J]. 导航与控制, 2021, 20(2):95-109.
[12] Sheng M W, Li J, Qin H D, et al. Ship target detection algorithm based on improved YOLOv3[J]. Navigation and Control, 2021, 20(2):95-109.
[13] Talebi H, Milanfar P. Learning to resize images for computer vision tasks[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV),Montreal,QC,Canada, 2021:487-496.
[14] Ge Z, Liu S, Wang F, et al. YOLOX:Exceeding YOLO series in 2021[EB/OL].[2021-08-06]. https://arxiv.org/abs/2107.08430.
url: https://arxiv.org/abs/2107.08430
[15] Wang C Y, Liao H Y M, Wu Y H, et al. CSPNet:A new backbone that can enhance learning capability of CNN[C]// in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 390-391.
[16] He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convo-lutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
doi: 10.1109/TPAMI.2015.2389824 url: http://ieeexplore.ieee.org/document/7005506/
[17] 刘鑫, 陈思溢, 陈小龙, 等. 基于深度学习的深层次多尺度特征融合目标检测算法[J]. 激光与光电子学进展, 2021, 58(12): 304-312.
[17] Liu X, Chen S Y, Chen X L, et al. Deep multi-scale feature fusion target detection algorithm based on deep learning[J]. Laser and Optoelectronics Progress, 2021, 58(12): 304-312.
[18] Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4,inception-resnet and the impact of residual connections on learning[C]// Thirty-first AAAI Conference on Artificial Intelligence, 2017:4278-4284.
[19] Lin T Y, Maire M, Belongie S, et al. Microsoft COCO:Common objects in context[C]// Proceedings of the European Conference on Computer Vision, 2014:740-755.
[20] 陈朋弟, 黄亮, 夏炎, 等. 基于Mask R-CNN的无人机影像路面交通标志检测与识别[J]. 国土资源遥感, 2020, 32(4): 61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
[20] Chen P D, Huang L, Xia Y, et al. Detection and recognition of road traffic signs in UAV images based on Mask R-CNN[J]. Remote Sensing for Land and Resources, 2020, 32(4): 61-67.doi: 10.6046/gtzyyg.2020.04.09.
doi: 10.6046/gtzyyg.2020.04.09
[1] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[6] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[11] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[12] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[13] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[14] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[15] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech