Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (6) : 107-117     DOI: 10.6046/zrzyyg.2024288
|
Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data
ZHANG Jinhua1,2,3(), HU Zhongwen1,2,3(), ZHANG Yinghui1,2,3, ZHANG Qian1,2,3, WANG Jingzhe1,4, WU Guofeng1,2,3
1. MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, Shenzhen University, Shenzhen 518060, China
2. Guangdong Key Laboratory of Urban Informatics, Shenzhen University, Shenzhen 518060, China
3. School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China
4. School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518060, China
Download: PDF(5551 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation distribution serves as a crucial foundation for natural resource conservation and ecosystem health assessment. In mountainous regions, substantial terrain undulations and complex vegetation types complicate the mapping process. Moreover, the traditional remote sensing-based vegetation classification, whose mapping relies on 2D imagery, fails to depict the vertical structure and 3D spatial distribution of vegetation. To investigate the potential of realistic 3D models in fine-scale vegetation classification and mapping, this study proposed a realistic 3D model-based mapping approach for mountain vegetation by integrating optical images and light detection and ranging (LiDAR) data. Focusing on Neilingding Island in Guangdong, this study constructed a multi-source dataset using realistic 3D models, multispectral images, and LiDAR point clouds acquired by unmanned aerial vehicle (UAV)-based measurements, followed by data registration and feature extraction. Subsequently, the LightGBM algorithm was employed to achieve fine-scale vegetation classification and to assess the classification performance of multi-source data features. Finally, semantic 3D mesh models of vegetation were generated by projecting the 2D vegetation maps onto the 3D models. The results indicate that realistic 3D models can effectively distinguish vegetation types. Their combination with multispectral and LiDAR data provides a more comprehensive description of the topography and vegetation structures in mountainous areas. Compared to using a single data source, this approach achieves an increase in the overall accuracy (OA) of 2D classification by 4.28% to 11.29%. Concurrently, the OA of the 3D mapping based on realistic 3D models reached 92.06%, with a Kappa coefficient of 0.89. This approach can reflect the accurate, visualized, 3D distribution patterns of mountain vegetation and improve the accuracy of fine-scale vegetation information extraction. This study demonstrates the significant potential of 3D model-multisource data integration for natural resource monitoring and provides novel ideas and methods for fine-scale and 3D information extraction of regional vegetation.

Keywords realistic 3D model      3D mapping      fine-scale classification of vegetation      mountain vegetation      light detection and ranging (LiDAR)      multispectral      multi-source data fusion     
ZTFLH:  TP79  
Issue Date: 31 December 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jinhua ZHANG
Zhongwen HU
Yinghui ZHANG
Qian ZHANG
Jingzhe WANG
Guofeng WU
Cite this article:   
Jinhua ZHANG,Zhongwen HU,Yinghui ZHANG, et al. Mapping mountain vegetation using realistic 3D models integrating optical images and light detection and ranging data[J]. Remote Sensing for Natural Resources, 2025, 37(6): 107-117.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024288     OR     https://www.gtzyyg.com/EN/Y2025/V37/I6/107
Fig.1  Location of study area
Fig.2  Schematic illustrations of multi-source data registration
Fig.3  Technical flowchart
数据源 特征类型 特征参数
实景三维模型 几何特征 线性度、平面度、球形度、全方差、各向异性、曲率变化、特征熵、特征值总和、垂直度、粗糙度、体积密度、表面密度
纹理特征 均值、方差、能量、同质性、对比度、不相似性、相关性、熵
多光谱 光谱波段 蓝、绿、红、红边、近红外、近红外-940
植被指数 ARI1,MCARI,NDVI,NLI,RGRI
LiDAR 地形特征 DSM,DEM,CHM,Slope,Aspect
高度特征 累积高度百分位数(1%,10%,20%,30%,40%,50%,60%,70%,80%,90%,99%)、平均绝对偏差、冠层起伏率、变异系数、峰度、二次幂平均、偏斜度、方差
多源数据融合 以上所有特征的组合
Tab.1  Description of the feature set
Fig.4  Illustration of 3D semantic mapping
数据 特征 F1/% OA/%
相思林 荔枝林 混合林 灌草丛 建筑 裸地 水体
实景三维模型 几何 75.29 87.68 71.95 86.08 90.37 86.8 98.59 85.28
纹理 86.18 80.33 76.53 81.76 88.33 86.61 98.43 85.46
几何+纹理 92.19 90.80 89.25 91.97 93.51 93.39 99.65 92.97
多光谱 波段 88.23 78.25 71.29 88.99 90.73 91.71 96.42 86.60
指数 74.80 72.57 64.47 83.83 81.98 87.84 94.3 80.07
波段+指数 89.40 80.11 73.94 90.80 93.31 93.86 97.39 88.46
LiDAR 地形 86.78 96.38 82.86 92.70 93.29 91.39 97.24 91.53
高度 90.36 92.98 81.10 88.77 90.17 88.02 89.59 88.81
地形+高度 94.15 97.90 90.60 96.09 95.83 95.28 98.47 95.47
多源数据融合 所有特征 99.51 99.90 99.3 99.85 99.84 99.86 99.99 99.75
Tab.2  Classification accuracy evaluation from different features
Fig.5  Fine vegetation classification maps using different data
Fig.6  Schematic illustrations of classification accuracy and feature importance
Fig.7  3D map of the sample meshes
类别 相思林/m2 荔枝林/m2 混合林/m2 灌草丛/m2 建筑/m2 裸地/m2 水体/m2 PA/%
相思林 7 589.17 3.22 887.19 0.67 7.37 5.96 0.00 89.35
荔枝林 0.57 2 695.00 116.16 3.09 96.51 0.00 0.00 92.57
混合林 273.48 18.97 10 865.33 134.58 110.48 42.96 0.00 94.93
灌草丛 3.79 3.29 187.89 1 504.19 27.87 11.43 0.00 86.52
建筑 0.72 1.90 8.00 0.83 947.26 19.21 0.00 96.86
裸地 72.38 5.40 74.17 19.10 36.73 1 514.38 4.81 87.69
水体 0.00 0.00 0.00 0.00 0.00 19.14 359.28 94.94
UA/% 95.58 98.8 89.51 90.48 77.25 93.88 98.68
OA/% 92.06
Kappa 0.89
Tab.3  Confusion matrix of the 3D mapping
Fig.8  Textured 3D mesh and semantic 3D mesh of the whole scene
植被类型 平均海拔/m 平均坡度/(°) 二维面积/m2 二维面积占比/% 三维面积/m2 三维面积占比/% 三维面积/二维面积
相思林 51.34 25.26 84 658.3 19.04 349 930.5 28.79 4.13
荔枝林 7.68 15.32 12 452.8 2.80 17 616.1 1.45 1.41
混合林 42.55 25.73 320 953.0 72.18 803 781.6 66.14 2.50
灌草丛 7.97 20.10 26 605.3 5.98 43 982.0 3.62 1.65
Tab.4  Spatial distribution parameters of different vegetation
[1] De Frenne P, Zellweger F, Rodríguez-Sánchez F, et al. Global buffering of temperatures under forest canopies[J]. Nature Ecology and Evolution, 2019, 3(5):744-749.
doi: 10.1038/s41559-019-0842-1
[2] Seidl R, Schelhaas M J, Rammer W, et al. Increasing forest disturbances in Europe and their impact on carbon storage[J]. Nature Climate Change, 2014, 4(9):806-810.
pmid: 25737744
[3] Lu Y, Wang L. How to Automate timely large-scale mangrove mapping with remote sensing[J]. Remote Sensing of Environment, 2021,264:112584.
[4] 明義森, 刘启航, 柏荷, 等. 利用光学和SAR遥感数据的若尔盖湿地植被分类与变化监测[J]. 遥感学报, 2023, 27(6):1414-1425.
[4] Ming Y S, Liu Q H, Bai H, et al. Classification and change detection of vegetation in the Ruoergai Wetland using optical and SAR remote sensing data[J]. National Remote Sensing Bulletin, 2023, 27(6):1414-1425.
doi: 10.11834/jrs.20221767 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20221767/
[5] Marselis S M, Tang H, Armston J D, et al. Distinguishing vegetation types with airborne waveform lidar data in a tropical forest-savanna mosaic:A case study in Lopé National Park,Gabon[J]. Remote Sensing of Environment, 2018,216:626-634.
[6] 吴培强, 任广波, 张程飞, 等. 无人机多光谱和LiDAR的红树林精细识别与生物量估算[J]. 遥感学报, 2022, 26(6):1169-1181.
[6] Wu P Q, Ren G B, Zhang C F, et al. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR[J]. National Remote Sensing Bulletin, 2022, 26(6):1169-1181.
doi: 10.11834/jrs.20221484 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20221484/
[7] 张妮娜, 张珂, 李运平, 等. 中国南方典型湿润山区植被类型的无人机多光谱遥感机器学习分类研究[J]. 遥感技术与应用, 2023, 38(1):163-172.
doi: 10.11873/j.issn.1004-0323.2023.1.0163
[7] Zhang N N, Zhang K, Li Y P, et al. Study on Machine Learning methods for vegetation classification in typical humid mountainous areas of south China based on the UAV multispectral remote sensing[J]. Remote Sensing Technology and Application, 2023, 38(1):163-172.
[8] 郭逸飞, 吴田军, 骆剑承, 等. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7):1406-1419.
doi: 10.12082/dqxxkx.2022.210594
[8] Guo Y F, Wu T J, Luo J C, et al. Remote sensing mapping of mountain vegetation via uncertainty-based iterative optimization[J]. Journal of Geo-Information Science, 2022, 24(7):1406-1419.
[9] 杨丹, 周亚男, 杨先增, 等. LSTM支持下时序Sentinel-1A数据的太白山区植被制图[J]. 地球信息科学学报, 2020, 22(12):2445-2455.
doi: 10.12082/dqxxkx.2020.200338
[9] Yang D, Zhou Y N, Yang X Z, et al. Vegetation mapping in Taibai Mountain area supported by LSTM with time series sentinel-1A data[J]. Journal of Geo-Information Science, 2020, 22(12):2445-2455.
[10] 张帆, 黄先锋, 高云龙, 等. 实景三维中国建设技术大纲(2021版)解读与思考[J]. 测绘地理信息, 2021, 46(6):171-174.
[10] Zhang F, Huang X F, Gao Y L, et al. Interpretation and reflection on technology outline of national 3D real scene(2021 edition)[J]. Journal of Geomatics, 2021, 46(6):171-174.
[11] 曲俸磊, 胡忠文, 张英慧, 等. 基于多视角二维投影的实景三维模型解译[J]. 地球信息科学学报, 2024, 26(3):654-665.
doi: 10.12082/dgxxkx.2024.230520
[11] Qu F L, Hu Z W, Zhang Y H, et al. Classification of textured 3D mesh models based on multiview 2D mapping[J]. Journal of Geo-Information Science, 2024, 26(3):654-665.
[12] Rouhani M, Lafarge F, Alliez P. Semantic segmentation of 3D textured meshes for urban scene analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,123:124-139.
[13] Laupheimer D, Haala N. Multi-modal semantic mesh segmentation in urban scenes[J]. ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2022,V-2-2022:267-274.
[14] 董梦成, 谢科, 黄惠. 城区场景建筑物单体分割与结构重建耦合研究[J]. 中国科学:信息科学, 2024, 54(2):281-300.
[14] Dong M C, Xie K, Huang H. Coupled study on instance segmentation and structural reconstruction of buildings in 3D urban scenes[J]. Scientia Sinica (Informationis), 2024, 54(2):281-300.
[15] 张荣庭, 张广运, 尹继豪. 复杂城市动态图卷积网络三维场景语义分割法[J]. 测绘学报, 2023, 52(10):1703-1713.
doi: 10.11947/j.AGCS.2023.20220466
[15] Zhang R T, Zhang G Y, Yin J H. Semantic segmentation method of 3D scenes using dynamic graph CNN for complex city[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10):1703-1713.
doi: 10.11947/j.AGCS.2023.20220466
[16] Wu Z, Ni M, Hu Z, et al. Mapping invasive plant with UAV-derived 3D mesh model in mountain area—a case study in Shenzhen Coast,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,77:129-139.
[17] Jurado J M, Ortega L, Cubillas J J, et al. Multispectral mapping on 3D models and multi-temporal monitoring for individual characterization of olive trees[J]. Remote Sensing, 2020, 12(7):1106.
doi: 10.3390/rs12071106 url: https://www.mdpi.com/2072-4292/12/7/1106
[18] 乔雪婷, 张娟娟, 李文斌, 等. 基于无人机遥感技术的广东内伶仃岛植被类型划分与植被图[J]. 中山大学学报(自然科学版), 2022, 61(4):22-30.
[18] Qiao X T, Zhang J J, Li W B, et al. Vegetation classification and vegetation map of Neilingding Island in Guangdong Province based on UAV remote sensing technology[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(4):22-30.
[19] Martinez A, Garcia-Consuegra J, Abad F. A correlation-symbolic approach to automatic remotely sensed image rectification[C]// IEEE 1999 International Geoscience and Remote Sensing Symposium.IGARSS’99.June 28 - July 2,1999, Hamburg,Germany.IEEE, 2002:336-338.
[20] Besl P J, McKay N D. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256.
doi: 10.1109/34.121791 url: http://ieeexplore.ieee.org/document/121791/
[21] Weinmann M, Jutzi B, Hinz S, et al. Semantic point cloud interpretation based on optimal neighborhoods,relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:286-304.
[22] Ferreira M P, Wagner F H, Aragão L E O C, et al. Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019,149:119-131.
[23] 陈树新, 刘炳杰, 王海熠, 等. 结合可见光植被指数和分水岭算法的单木树冠信息提取[J]. 遥感技术与应用, 2024, 39(1):34-44.
doi: 10.11873/j.issn.1004-0323.2024.1.0034
[23] Chen S X, Liu B J, Wang H Y, et al. Extraction of individual tree crown based on UAV tilt photogrammetry[J]. Remote Sensing Technology and Application, 2024, 39(1):34-44.
[24] Zhang W, Qi J, Wan P, et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation[J]. Remote Sensing, 2016, 8(6):501.
doi: 10.3390/rs8060501 url: https://www.mdpi.com/2072-4292/8/6/501
[25] 鄢敏, 夏永华, 王冲, 等. 无人机点云与图像跨模态混合融合的乔木林单木尺度树种分类研究[J]. 遥感技术与应用, 2024, 39(1):87-97.
doi: 10.11873/j.issn.1004-0323.2024.1.0087
[25] Yan M, Xia Y H, Wang C, et al. Study on classification of Arbor tree species at single tree scale based on cross-modal hybrid fusion of UAV point cloud and image[J]. Remote Sensing Technology and Application, 2024, 39(1):87-97.
[26] Ke G, Meng Q, Finley T, et al. LightGBM[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.December 4 - 9,2017,Long Beach,California,USA.ACM, 2017:3149-3157.
[27] 史飞飞, 高小红, 肖建设, 等. 基于集成学习和多时相遥感影像的枸杞种植区分类[J]. 自然资源遥感, 2022, 34(1):115-126.doi:10.6046/zrzyyg.2021064.
[27] Shi F F, Gao X H, Xiao J S, et al. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1):115-126.doi:10.6046/zrzyyg.2021064.
[28] Qin H, Zhou W, Yao Y, et al. Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR,hyperspectral,and ultrahigh-resolution RGB data[J]. Remote Sensing of Environment, 2022,280:113143.
[29] Alonzo M, Bookhagen B, Roberts D A. Urban tree species mapping using hyperspectral and lidar data fusion[J]. Remote Sensing of Environment, 2014,148:70-83.
[30] 徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752.
[30] Xu Y, Zhen J N, Jiang X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. National Remote Sensing Bulletin, 2021, 25(3):737-752.
doi: 10.11834/jrs.20210281 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20210281/
[1] LI Yinglong, DENG Yupeng, KONG Yunlong, CHEN Jingbo, MENG Yu, LIU Diyou. End-to-end land cover classification based on panchromatic-multispectral dual-stream convolutional network[J]. Remote Sensing for Natural Resources, 2025, 37(5): 152-161.
[2] MA Min, ZUO Zhen, HAN Yandong, QIU Ye, QIAO Mudong. Origin of surface substrate for soil salinization and alkalization in the Songnen Plain[J]. Remote Sensing for Natural Resources, 2025, 37(2): 128-139.
[3] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[4] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[5] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[6] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[7] Feng YIN, Xiangchao MENG, Peng LIANG. A variational fusion method for remote sensing images of China’s domestic high-resolution satellites[J]. Remote Sensing for Land & Resources, 2018, 30(2): 100-106.
[8] Hongrui ZHENG, Zhigang XU, Le GAN, Ling CHEN, Jinzhong YANG, Peijun DU. Synthetic aperture Radar remote sensing technology in geological application: A review[J]. Remote Sensing for Land & Resources, 2018, 30(2): 12-20.
[9] YAN Li, JIANG Weiwei. Progress in the study of vegetation cover classification of multispectral remote sensing imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 8-13.
[10] ZHANG Zhenhua, GAN Fuping, WANG Jun. Index set of multispectral camera based on application requirements[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(2): 1-7.
[11] YU Liang, LI Ting, ZHAN Qingming, YU Kun. Segmentation of LiDAR point clouds based on similarity measures in multi-dimensional Euclidean Space[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(3): 31-36.
[12] LIU Bingxin, LI Ying, GAO Chao. Method for oil spill information extraction from airborne multispectral imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(1): 42-46.
[13] XU Hong-gen, WANG Jian-chao, ZHENG Xiong-wei, WU Fang, LI Qian. Object-based Point Clouds Classification of the Vegetation and Building Overlapped Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 23-27.
[14] SONG Wei. AN EXPERIMENTAL STUDY OF THE GEOMETRIC CORRECTION METHOD FOR CBERS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2009, 21(1): 51-54.
[15] YANG Jin-Zhong. THE TECHNICAL SYSTEM OF MULTISPECTRAL REMOTE SENSING ANOMALY EXTRACTION[J]. REMOTE SENSING FOR LAND & RESOURCES, 2007, 19(4): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech