Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2012, Vol. 24 Issue (2) : 23-27     DOI: 10.6046/gtzyyg.2012.02.05
Technology and Methodology |
Object-based Point Clouds Classification of the Vegetation and Building Overlapped Area
XU Hong-gen1,2, WANG Jian-chao1, ZHENG Xiong-wei1, WU Fang1, LI Qian1
1. China Aero Geophysical Survey and Remote Sensing Center for Land and Resources, Beijing 100083, China;
2. Wuhan Center of Geological Survey, Wuhan 430205, China
Download: PDF(1088 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  This paper proposes an object-oriented point clouds classification method for solving the difficult classification problem for the overlapping between vegetation and buildings based on reviewing current status of LiDAR point clouds classification approaches. In the proposed method, the point clouds are firstly separated into ground points and non-ground points through adaptive TIN filter method, and the DTM is obtained. Second, a triangle network is constructed for non-ground points higher than DTM. The non-ground point clouds could be divided into multi-objects by removing longer edges (edge between ground and object). Then, the object is judged to decide whether it belongs to vegetation or building according to its information entropy of triangle network slope. Finally, for objects difficult to be distinguished from other objects, the overlapped area between vegetation and buildings is extended by geometric shape of buildings, so that the accuracy of point clouds classification of the overlapped area could be improved. The experiment results show good classification performance for buildings and vegetation, and the accuracy reaches 87%.
Keywords water erosion desertification      the three gorges      remote sensing      dynamic monitoring     
: 

P 237.3

 
Issue Date: 03 June 2012
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TONG Li-qiang
LI Li
Cite this article:   
TONG Li-qiang,LI Li. Object-based Point Clouds Classification of the Vegetation and Building Overlapped Area[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 23-27.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2012.02.05     OR     https://www.gtzyyg.com/EN/Y2012/V24/I2/23
[1] Filin S,Pfeifer N.Segmentation of Airborne Laser Scanning Data Using a Slope Adaptive Neighborhood[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,60(2):71-80.
[2] Vosselman G,Dijkman S.3D Building Model Reconstruction from Point Clouds and Ground Plans[J].International Aachives of Photogrammetry Remote Sensing and Spatial Information Sciences,2001,34(3/w4):37-44.
[3] Höfle B,Geist T,Rutzinger M,et al.Glacier Surface Segmentation Using Airborne Laser Scanning Point Cloud and Intensity Data[J].Remote Sensing and Spatial Information Sciences,2007(3/w52):195-200.
[4] Miliaresis G,Kokkas N.Segmentation and Object-based Classification for the Extraction of the Building Class from LiDAR DEMs[J].Computers & Geosciences,2007,33(8):1076-1087.
[5] Lodha S K,Kreps E J,Helmbold D P,et al.Aerial LiDAR Data Classification Using Support Vector Machines(SVM)[C]//Proceedings of the Conference on 3DPVT,2006,3(4):567-574.
[6] Chen Q,Gong P,Baldocchi D,et al.Filtering Airborne Laser Scanning Data with Morphological Methods[J].Photogrammetric Engineering and Remote Sensing,2007,73(2):175.
[7] Zhang K Q,Chen S C,Whitman D,et al.A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LiDAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(4):872-882.
[8] Kraus K,Rieger W.Processing of Laser Scanning Data for Wooded Areas[J].Fritsch and Spiller,Editors,Photogrammetric Week,1999,99:221-231.
[9] Lee H S,Younan N H.DTM Eextraction of LiDAR Returns Via Adaptive Processing[J].IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2063-2069.
[10] Axelsson P.DEM Generation from Laser Scanner Data Using Adaptive TIN Models[J].International Archives of Photogrammetry and Remote Sensing,2000,33(B4/1;PART 4):110-117.
[11] Elmqvist M,Jungert E,Lantz F,et al.Terrain Modelling and Analysis Using Laser Scanner Data[J].IAPRS,2001,34(3/w4):219-224.
[12] 张靖,李乐林,江万寿.基于等高线簇分析的复杂建筑物模型重建方法[J].地球信息科学学报,2010,12(5):641-648.
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech