Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 100-106     DOI: 10.6046/gtzyyg.2018.02.14
|
A variational fusion method for remote sensing images of China’s domestic high-resolution satellites
Feng YIN1(), Xiangchao MENG2(), Peng LIANG1
1. Hubei Institute of Land and Resources, Wuhan 430071, China
2.School of Resources and Environmental Sciences, Wuhan University, Wuhan 430079, China
Download: PDF(4022 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The current panchromatic (PAN) / multispectral (MS) fusion methods do not comprehensively consider the characteristics of the remote sensing images from China’s domestic high-resolution satellites. Therefore, this paper proposes a variational fusion method for China’s domestic high-resolution images. On the one hand, the three-dimensional spectral high-fidelity model based on the spectral gradient is proposed by comprehensive consideration of the relations between the spectral bands. On the other hand, according to the existing blurring characteristics of the PAN image acquired by China’s domestic high-resolution satellites, the spatial enhancement model in consideration of the blurring degradation is developed. Finally, the fusion energy function is constructed by combining the prior knowledge of the remote sensing images, and it is solved by the classical gradient decent methods to obtain the fused image. The proposed method was tested and verified by the Gaofen-1 (GF-1) and Gaofen-2 (GF-2) satellite datasets. In addition, the popular GS, PRACS, and ATWT-M3 methods were applied for comparison from both qualitative and quantitative aspects. The experimental results show that the proposed variational high-fidelity PAN/MS fusion method comprehensively considers the characteristics of China’s domestic satellites, and hence it can maximally preserve the spectral information while effectively improve the spatial resolution of the MS images, thus achieving the best fused results.

Keywords fusion      multispectral image      panchromatic image      variational model      remote sensing     
:  TP751.1  
Corresponding Authors: Xiangchao MENG     E-mail: 89642740@qq.com;mengxc@whu.edu.cn
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Feng YIN
Xiangchao MENG
Peng LIANG
Cite this article:   
Feng YIN,Xiangchao MENG,Peng LIANG. A variational fusion method for remote sensing images of China’s domestic high-resolution satellites[J]. Remote Sensing for Land & Resources, 2018, 30(2): 100-106.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.14     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/100
Fig.1  Fusion results of the GF-1 simulated experiment
Fig.2  Fusion results of the GF-2 simulated experiment
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.841 7 0.857 9 0.860 7 0.884 8 0.894 0
PSNR 24.246 5 25.101 3 25.112 1 25.394 7 25.610 3
ERGAS 6.340 5 5.838 7 5.891 9 5.580 7 5.462 1
SAM 4.885 5 4.316 0 4.574 7 4.529 5 4.204 1
Tab.1  Quantitative evaluation of the fusion results in the GF-1 simulated experiment
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.979 4 0.976 6 0.973 3 0.990 1 0.990 8
PSNR 39.291 9 39.194 3 38.721 3 43.675 0 43.800 5
ERGAS 0.672 1 0.707 4 0.779 7 0.423 6 0.416 2
SAM 0.547 5 0.530 2 0.645 7 0.459 1 0.437 9
Tab.2  Quantitative evaluation of the fusion results in the GF-2 simulated experiment
Fig.3  Fusion results of the GF-1 real experiment
Fig.4  Fusion results of the GF-2 real experiment
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.798 0 0.996 4 0.994 2 0.997 4 0.998 0
PSNR 25.913 0 44.590 5 42.419 0 45.775 1 46.892 2
ERGAS 4.239 4 0.542 2 0.697 5 0.449 6 0.403 2
SAM 6.218 9 0.426 4 0.581 9 0.406 0 0.328 7
Tab.3  Quantitative evaluation of the fusion results in the GF-1 real experiment
评价指标 融合方法
GS方法 PRACS方法 ATWT-M3方法 基于传统光谱
保真项融合方法
本文方法
CC 0.948 4 0.988 1 0.991 4 0.992 0 0.994 0
PSNR 30.268 1 38.633 9 39.046 6 39.441 1 40.442 4
ERGAS 1.153 5 0.491 7 0.492 1 0.445 9 0.391 6
SAM 0.349 9 0.290 2 0.355 0 0.418 2 0.250 8
Tab.4  Quantitative evaluation of the fusion results in the GF-2 real experiment
[1] Shen H F, Meng X C, Zhang L P . An integrated framework for the spatio-temporal-spectral fusion of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(12):7135-7148.
doi: 10.1109/TGRS.2016.2596290 url: http://ieeexplore.ieee.org/document/7560877/
[2] 张良培, 沈焕锋 . 遥感数据融合的进展与前瞻[J]. 遥感学报, 2016,20(5):1050-1061.
[2] Zhang L P, Shen H F . Progress and future of remote sensing data fusion[J]. Journal of Remote Sensing, 2016,20(5):1050-1061.
[3] Aiazzi B, Alparone L, Baronti S , et al. Twenty-five years of pansharpening:A critical review and new developments[M] //Chen C H.Signal and Image Processing for Remote Sensing. 2nd edition.Boca Raton,FL: CRC Press, 2012: 533-548.
[4] Vivone G, Alparone L, Chanussot J , et al. A critical comparison among pansharpening algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,53(5):2565-2586.
doi: 10.1109/IGARSS.2014.6946389 url: http://ieeexplore.ieee.org/document/6946389/
[5] Chavez Jr P S, Sides S C, Anderson J A . Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering and Remote Sensing, 1991,57(3):295-303.
doi: 10.1163/157006707X222768 url: http://europepmc.org/abstract/AGR/IND91014290
[6] Laben C A, Brower B V .Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening:United States, 6011875[P].2000 -01-04.
[7] Meng X C, Li J, Shen H F , et al. Pansharpening with a guided filter based on three-layer decomposition[J]. Sensors, 2016,16(7):1068.
doi: 10.3390/s16071068 pmid: 4970115 url: http://www.mdpi.com/1424-8220/16/7/1068
[8] Ranchin T, Wald L . Fusion of high spatial and spectral resolution images:The ARSIS concept and its implementation[J]. Photogrammetric Engineering and Remote Sensing, 2000,66(1):49-61.
doi: 10.1002/2014WR016042 url: http://www.researchgate.net/publication/29612628_FUSION_OF_HIGH_SPATIAL_AND_SPECTRAL_RESOLUTION_IMAGES_THE_ARSIS_CONCEPT_AND_ITS_IMPLEMENTATION
[9] Alparone L, Aiazzi B . MTF-tailored multiscale fusion of high-resolution MS and Pan imagery[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(5):591-596.
doi: 10.14358/PERS.72.5.591 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=72&issue=5&spage=591
[10] 李文静, 温文鹏, 王清和 . 基于Contourlet变换的遥感图像融合方法研究[J]. 国土资源遥感, 2015,27(2):44-50.doi: 10.6046/gtzyyg.2015.02.07.
doi: 10.6046/gtzyyg.2015.02.07 url: http://d.wanfangdata.com.cn/Periodical/gtzyyg201502008
[10] Li W J, Wen W P, Wang Q H . A study of remote sensing image fusion method based on Contourlet transform[J]. Remote Sensing for Land and Resources, 2015,27(2):44-50.doi: 10.6046/gtzyyg.2015.02.07.
[11] Tu T M, Su S C, Shyu H C , et al. A new look at IHS-like image fusion methods[J]. Information Fusion, 2001,2(3):177-186.
doi: 10.1016/S1566-2535(01)00036-7 url: http://linkinghub.elsevier.com/retrieve/pii/S1566253501000367
[12] Meng X C, Shen H F, Li H F, et al. Improving the spatial resolution of hyperspectral image using panchromatic and multispectral images:An integrated method [C]//Proceedings of the 7th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Tokyo,Japan:IEEE, 2015: 1-4.
[13] 孟祥超, 沈焕锋, 张洪艳 , 等. 基于梯度一致性约束的多光谱/全色影像最大后验融合方法[J]. 光谱学与光谱分析, 2014,34(5):1332-1337.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ140506000250GdJfMi
[13] Meng X C, Shen H F, Zhang H Y , et al. Maximum a posteriori fusion method based on gradient consistency constraint for multispectral/panchromatic remote sensing images[J]. Spectroscopy and Spectral Analysis, 2014,34(5):1332-1337.
[14] Meng X C, Shen H F, Zhang L P, et al. A unified framework for spatio-temporal-spectral fusion of remote sensing images [C]//Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Milan,Italy:IEEE, 2015: 2584-2587.
[15] Zhang L P, Shen H F, Gong W , et al. Adjustable model-based fusion method for multispectral and panchromatic images[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 2012,42(6):1693-1704.
doi: 10.1109/TSMCB.2012.2198810 pmid: 22736648 url: http://ieeexplore.ieee.org/document/6222015/
[16] Ballester C, Caselles V, Igual L , et al. A variational model for P+XS image fusion[J]. International Journal of Computer Vision, 2006,69(1):43-58.
doi: 10.1007/s11263-006-6852-x url: http://link.springer.com/10.1007/s11263-006-6852-x
[17] Palsson F, Sveinsson J R, Ulfarsson M O . A new pansharpening algorithm based on total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(1):318-322.
doi: 10.1109/LGRS.2013.2257669 url: http://ieeexplore.ieee.org/document/6542015/
[18] Shen H F, Zhang L P, Huang B , et al. A MAP approach for joint motion estimation,segmentation, and super resolution[J]. IEEE Transactions on Image Processing, 2007,16(2):479-490.
doi: 10.1109/TIP.2006.888334 pmid: 17269640 url: http://ieeexplore.ieee.org/document/4060953/
[19] Li H F, Zhang L P, Shen H F , et al. A variational gradient-based fusion method for visible and SWIR imagery[J]. Photogrammetric Engineering and Remote Sensing, 2012,78(9):947-958.
doi: 10.14358/PERS.78.9.947 url: http://openurl.ingenta.com/content/xref?genre=article&issn=0099-1112&volume=78&issue=9&spage=947
[20] Wang Z, Bovik A C . Mean squared error:Love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009,26(1):98-117.
doi: 10.1109/MSP.2008.930649 url: http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4775883
[21] Wald L. Quality of high resolution synconfproced images: Is there a simple criterion? [C]//Proceedings of the 3rd Conference “Fusion of Earth Data:Merging Point Measurements,Raster Maps and Remotely Sensed Images”. Sophia Antipolis,France:SEE/URISCA, 2000: 99-103.
[22] Choi J, Yu K, Kim Y . A new adaptive component-substitution-based satellite image fusion by using partial replacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(1):295-309.
doi: 10.1109/TGRS.2010.2051674 url: http://ieeexplore.ieee.org/document/5523973/
[23] Wald L, Ranchin T, Mangolini M . Fusion of satellite images of different spatial resolutions:Assessing the quality of resulting images[J]. Photogrammetric Engineering And Remote Sensing, 1997,63(6):691-699.
doi: 10.1016/S0924-2716(97)00008-7 url: http://www.researchgate.net/publication/29610623_FUSION_OF_SATELLITE_IMAGES_OF_DIFFERENT_SPATIAL_RESOLUTIONS_ASSESSING_THE_QUALITY_OF_RESULTING_IMAGES
[1] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[2] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[3] LYU Pin, XIONG Liyuan, XU Zhengqiang, ZHOU Xuecheng. FME-based method for attribute consistency checking of vector data of mines obtained from remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2022, 34(1): 293-298.
[4] ZHANG Daming, ZHANG Xueyong, LI Lu, LIU Huayong. Remote sensing image segmentation based on Parzen window density estimation of super-pixels[J]. Remote Sensing for Natural Resources, 2022, 34(1): 53-60.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] SONG Renbo, ZHU Yuxin, GUO Renjie, ZHAO Pengfei, ZHAO Kexin, ZHU Jie, CHEN Ying. A method for 3D modeling of urban buildings based on multi-source data integration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 93-105.
[7] LI Weiguang, HOU Meiting. A review of reconstruction methods for remote-sensing-based time series data of vegetation and some examples[J]. Remote Sensing for Natural Resources, 2022, 34(1): 1-9.
[8] DING Bo, LI Wei, HU Ke. Inversion of total suspended matter concentration in Maowei Sea and its estuary, Southwest China using contemporaneous optical data and GF SAR data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 10-17.
[9] GAO Qi, WANG Yuzhen, FENG Chunhui, MA Ziqiang, LIU Weiyang, PENG Jie, JI Yanzhen. Remote sensing inversion of desert soil moisture based on improved spectral indices[J]. Remote Sensing for Natural Resources, 2022, 34(1): 142-150.
[10] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[11] HE Peng, TONG Liqiang, GUO Zhaocheng, TU Jienan, WANG Genhou. A study on hidden risks of glacial lake outburst floods based on relief amplitude: A case study of eastern Shishapangma[J]. Remote Sensing for Natural Resources, 2022, 34(1): 257-264.
[12] YU Xinli, SONG Yan, YANG Miao, HUANG Lei, ZHANG Yanjie. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4): 72-81.
[13] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[14] AI Lu, SUN Shuyi, LI Shuguang, MA Hongzhang. Research progress on the cooperative inversion of soil moisture using optical and SAR remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(4): 10-18.
[15] LI Teya, SONG Yan, YU Xinli, ZHOU Yuanxiu. Monthly production estimation model for steel companies based on inversion of satellite thermal infrared temperature[J]. Remote Sensing for Natural Resources, 2021, 33(4): 121-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech