Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2010, Vol. 22 Issue (4) : 98-102     DOI: 10.6046/gtzyyg.2010.04.20
Technology Application |

The Calculation and Analysis of the Co-seismic Deformation Field of Yutian Ms 7.3 Earthquake Basing on the Ascending and Descending Orbit ASAR Data
HONG Shun-ying 1,2, SHEN Xu-hui 2, SHAN Xin-jian 1, LIU Zhi-rong 3, DAI Ya-qiong 2,  JING Feng 2
1.Institute of Geology, China Earthquake Administration, Beijing 100029, China; 2.Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China; 3.Institute of Disaster Prevention Science and Technology, Beijing 101601, China
Download: PDF(1388 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

 The Differential Interferometric Synthetic Aperture Radar (D-InSAR) based on the ascending and descending orbit data can better reveal the feature of coseismic deformation fields. With the ASAR data from European Space Agency (ESA) and two-pass D-InSAR measurement, this paper obtained both ascending orbit and descending orbit coseismic deformation fields of Yutian Ms7.3 Earthquake. The results show that the max LOS uplifting value is about +13.3 cm and the subsiding value is about -82.0 cm in the ascending-orbit coseismic deformation field, and the max LOS uplifting value is about +36.5 cm and the subsiding value is about -66.5 cm in the descending-orbit coseismic deformation field. The Yutian Earthquake is mainly rupturing along the NNE-trending normal fault with a little left-striking, the northwest plate is the hanging-wall (subsiding) of the normal fault, and the southeast plate is the footwall (uplifting) of the normal fault. The coseismic deformation fields of ascending and descending orbits are different from each other in some aspects, but their variable tendencies and characteristics are similar, and the difference is mainly due to the two different observation modes.

Keywords Remote sensing technique      Urban pattern      Fractal     
: 

TP 75

 
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Shan
SHEN Ning-ze
Cite this article:   
YANG Shan,SHEN Ning-ze.
The Calculation and Analysis of the Co-seismic Deformation Field of Yutian Ms 7.3 Earthquake Basing on the Ascending and Descending Orbit ASAR Data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2010, 22(4): 98-102.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2010.04.20     OR     https://www.gtzyyg.com/EN/Y2010/V22/I4/98

[1]Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of The Landers Earthquake Mapped by Rader Interferometry[J]. Nature,1993,364:138-142.

[2]Peltzer G,Frederic Crampe,Gsofmy King.Evidence of Nonlinear Elasticity of the Crust from the Mw 7.6 Manyi(Tibet) Earthquake[J].Science,1999,286:272-276.

[3]单新建,马瑾,王长林,等.利用星载D-InSAR技术获取的地表形变场提取玛尼地震震源断层参数[J].中国科学,2002,32(10):837-844.

[4]Ryder I, Parsons B, Wright T J,et al. Post-seismic Motion Following the 1997 Manyi (Tibet)Earthquake:InSAR Observations and Modelling[J].Geophysical Journal International, 2007,169:1009-1027.

[5]Lin A M,Fu B H,Gun J M,et al.Co-seismic Strike-slip and Rupture Length Produced by the 2001 Ms 8.1 Central Kunlun Earthquake[J]. Science,2002,296:2015-2017. 

[6]王超,刘智,张红,等.张北—尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550-2554.

[7]Pathier E, Frnneau B, et al. Coseismic Displacements of the Footwall of the Chelungpu Fault Caused by the 1999,Taiwan,Chi-Chi Earthquake from InSAR and GPS Data[J].Earth Planet Scicence Letters, 2003,212:73-88.

[8]刘国祥,丁晓利,李志伟,等.ERS卫星雷达干涉测量:1999年台湾集集大地震震前和同震地表位移[J].地球物理学报,2002,45(增刊):165-174.

[9]洪顺英,刘智荣,戴娅琼,等.西藏改则地震升降轨同震形变场特征分析与破裂模式[J].国土资源遥感,2010(1):44-48.

[10]尹光华,蒋靖祥,吴国栋.2008年3月21日于田7.4级地震的构造背景[J]. 干旱区地理,2008,31(4):543-549.

[11]陈学忠, 蒋长胜, 李燕娥. 2008年3月21日新疆于田7.3级地震[J]. 国际地震动态, 2008(4):18-28.

[12]Rodriguez E,Morris C S, Belz J E, et al.An Assessment of the SRTM Topographic Products[R].JPL D-31639, Jet Propulsion Laboratory,Pasadena, California, 2005:143.

[13]LI Zhiwei. Modeling Atmospheric Effects on Repeat-pass InSAR Measurements[D]. Hong Kong:Department of Land Surveying and Geo-Informatics, the Hong Kong Polytechnic University,2004.

[1] Decai JIANG, Wenji LI, Jingmin LI, Zhaofeng BAI. Extraction of the forest fire region based on the span of ALOS PALSAR by object-oriented analysis[J]. Remote Sensing for Land & Resources, 2019, 31(4): 47-52.
[2] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[3] Hui HUANG, Xiongwei ZHENG, Genyun SUN, Yanling HAO, Aizhu ZHANG, Jun RONG, Hongzhang MA. Seismic image classification based on gravitational self-organizing map[J]. Remote Sensing for Land & Resources, 2019, 31(3): 95-103.
[4] Yongmei ZHANG, Haiyan SUN, Yulong XU. An improved multispectral image segmentation method based on super-pixels[J]. Remote Sensing for Land & Resources, 2019, 31(1): 58-64.
[5] HAN Haihui, WANG Yilin, YANG Min, REN Guangli, YANG Junlu, LI Jianqiang, GAO Ting. Application of fractal dimension-change point method to the extraction of remote sensing alteration anomaly[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(3): 137-142.
[6] HU Hualong, XUE Wu, QIN Zhiyuan. Extraction of residential area from high resolution images based on wavelet texture and primitive merging[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 21-28.
[7] HAN Haihui, WANG Yilin, REN Guangli, YANG Junlu, LI Jianqiang, YANG Min. Nonlinear analysis method for remote sensing alteration anomalies: A case study of Xinjinchang and Laojinchang in Beishan[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(1): 43-49.
[8] LIU Lei, ZANG Shuying, SHAO Tiantian, WEI Jinhong, SONG Kaishan. Characterization of lake morphology in China using remote sensing and GIS[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(3): 92-98.
[9] ZHOU Lintao, YANG Guofan, ZHAO Fuqiang, DU Juan. Water information extraction from remote sensing image using EMD and fraction method[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(4): 41-45.
[10] YAN Tingting, BIAN Hongfeng, LIAO Guixiang, SHENG Lianxi, ZHANG Jishun, GAO Minghui. Research status of methods for mapping forested wetlands based on remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 11-18.
[11] JIA Chunyang, LI Weihua, LI Xiaochun. High-resolution remote sensing image segmentation based on weight adaptive fractal net evolution approach[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(4): 22-25.
[12] QIAN Jianping, ZHANG Yuan, ZHAO Xiaoxing, ZHAO Shaojie, LI Chengli. Extraction of linear structure and alteration information based on remote sensing image and ore-prospecting prognosis for Dongwu Banner, Inner Mongolia[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 109-117.
[13] YUAN Xiaoping, LIU Shaofeng, TIAN Guizhong, CHEN Li, YU Jing. Analysis of the fractal dimension in the Golmud River basin based on DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 111-116.
[14] ZHENG Gui-xiang, CHI Tian-he, LIN Qi-zhong. Fractal Application in Lithological Classification and Alteration Extraction[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(2): 110-115.
[15] FENG Yong-jiu, LIU Dan, HAN Zhen. Shoreline Extraction and Change Analysis of the Jiuduansha Islands with the Support of Remote Sensing and GIS Technologies[J]. REMOTE SENSING FOR LAND & RESOURCES, 2012, 24(1): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech