Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (2) : 182-187     DOI: 10.6046/gtzyyg.2016.02.28
Technology Application |
Decision tree algorithm of automatically extracting mangrove forests information from Landsat 8 OLI imagery
ZHANG Xuehong
School of Geography and Remote Sensing, Nanjing University of Information Science & Technology, Nanjing 210044, China
Download: PDF(2194 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

NDMI (normalized difference moisture index) is widely used to assess and retrieve vegetation liquid water content. In this study, decision tree method was employed to automatically extract mangrove forests information combining the NDMI and MNDPI (modified normalized difference pond index), modified according to the mangrove characteristics, with Landsat8 OLI imagery acquired at Shankou mangrove national ecosystem nature reserve in Guangxi. The research results show that mangrove forests spectra consist of vegetation and wetland characteristics due to the unique near-shore coastal habitat of mangrove forests. MNDPI and NDMI can represent the spectral contrast between shortwave infrared region and visible region, near infrared region respectively. Therefore, the two spectral indices can successfully be employed to extract wetland vegetation and effectively discriminate mangrove forests from other land cover types. The decision tree method effectively extracted mangrove forests information by combining the classification features of MNDPI and NDMI and using Landsat8 OLI remotely sensed data. The commission error and omission error of mangrove forests were 5.34% and 1.69% respectively.

Keywords apple leaf      hyperspectral      content of nitrogen(N)      back propagation(BP)neural network     
:  TP751.1  
  TP753  
Issue Date: 14 April 2016
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AN Jing
YAO Guoqing
ZHU Xicun
Cite this article:   
AN Jing,YAO Guoqing,ZHU Xicun. Decision tree algorithm of automatically extracting mangrove forests information from Landsat 8 OLI imagery[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(2): 182-187.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2016.02.28     OR     https://www.gtzyyg.com/EN/Y2016/V28/I2/182

[1] Blasco F,Saenger P,Janodet E. Mangroves as indicators of coastal change[J].Catena,1996,27(3/4):167-178.

[2] Liu K,Li X,Shi X,et al.Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning[J].Wetlands,2008,28(2):336-346.

[3] FAO.The World's Mangroves 1980—2005,FAO Forestry Paper No.153[R/OL].FAO:Rome,Italy,2007;Available online:ftp://ftp.fao.org/docrep/fao/010/a1427e/a1427e00.pdf(accessed on 9 October 2014).

[4] Jensen J R,Lin H Y,Yang X H,et al.The measurement of mangrove characteristics in south-west Florida using spot multispectral data[J].Geocarto International,1991,6(2):13-21.

[5] Rasolofoharinoro M,Blasco F,Bellan M F,et al.A remote sensing based methodology for mangrove studies in Madagascar[J].International Journal of Remote Sensing,1998,19(10):1873-1886.

[6] Ferreira M A,Andrade F,Bandeira S O,et al.Analysis of cover change(1995—2005)of Tanzania/Mozambique trans-boundary mangroves using Landsat imagery[J].Aquatic Conservation:Marine and Freshwater Ecosystems,2009,19(S1):S38-S45.

[7] Lee T M,Yeh H C.Applying remote sensing techniques to monitor shifting wetland vegetation:A case study of Danshui River estuary mangrove communities,Taiwan[J].Ecological Engineering,2009,35(4):487-496.

[8] 黎夏,刘凯,王树功.珠江口红树林湿地演变的遥感分析[J].地理学报,2006,61(1):26-34. Li X,Liu K,Wang S G.Mangrove wetland changes in the Pearl River estuary using remote sensing[J].Acta Geographica Sinica,2006,61(1):26-34.

[9] 张雪红.基于知识与规则的红树林遥感信息提取[J].南京信息工程大学学报,2011,3(4):341-345. Zhang X H.Remote sensing information extraction of mangrove based on knowledge and rules[J].Journal of Nanjing University of Information Science & Technology,2011,3(4):341-345.

[10] Chaudhury M U.Digital analysis of remote sensing data for monitoring the ecological status of the mangrove forests of Sunderbans in Bangladesh[C]//Proceedings of the 23rd International Symposium on Remote Sensing of the Environment.Bangkok,Thailand,1990,1:493-497.

[11] Green E P,Clark C D,Mumby P J,et al.Remote sensing techniques for mangrove mapping[J].International Journal of Remote Sensing,1998,19(5):935-956.

[12] Aschbacher J,Ofren R,Delsol J P,et al.An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies:Preliminary results[J].Hydrobiologia,1995,295(1/3):285-294.

[13] Long B G,Skewes T D.GIS and remote sensing improves mangrove mapping[C]//Floreat W A.7th Australasian Remote Sensing Conference,Volume 1.Melbourne:Remote Sensing and Photogrammetry Association Australia Ltd.,1994:545-551.

[14] 张雪红,田庆久.利用温湿度指数提高红树林遥感识别精度[J].国土资源遥感,2012,24(3):65-70.doi:10.6046/gtzyyg.2012.03.13. Zhang X H,Tian Q J.Application of the temperature-moisture index to the improvement of remote sensing identification accuracy of mangrove[J].Remote Sensing for Land and Resources,2012,24(3):65-70.doi:10.6046/gtzyyg.2012.03.13.

[15] 张雪红,周杰,魏瑗瑗,等.结合潮位信息的红树林遥感识别[J].南京信息工程大学学报,2013,5(6):501-507. Zhang X H,Zhou J,Wei Y Y,et al.Remote sensing identification of mangrove forest combined tidal level information[J].Journal of Nanjing University of Information Science and Technology,2013,5(6):501-507.

[16] 刘凯,黎夏,王树功,等.珠江口近20年红树林湿地的遥感动态监测[J].热带地理,2005,25(2):111-116. Liu K,Li X,Wang S G,et al.Monitoring of the changes of mangrove wetland around the Zhujiang estuary in the past two decades by remote sensing[J].Tropical Geography,2005,25(2):111-116.

[17] Liu K,Li X,Shi X,et al.Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning[J].Wetlands,2008,28(2):336-346.

[18] Giri C,Pengra B,Zhu Z L,et al.Monitoring mangrove forest dynamics of the sundarbans in bangladesh and India using multi-temporal satellite data from 1973 to 2000[J].Estuarine,Coastal and Shelf Science,2007,73(1/2):91-100.

[19] Rakotomavo A,Fromard F.Dynamics of mangrove forests in the Mangoky River Delta,Madagascar,under the influence of natural and human factors[J].Forest Ecology and Management,2010,259(6):1161-1169.

[20] Blasco F,Aizpuru M,Gers C.Depletion of the mangroves of continental Asia[J].Wetlands Ecology and Management,2001,9(3):255-266.

[21] Thu P M,Populus J.Status and changes of mangrove forest in Mekong delta:case study in Tra Vinh,Vietnam[J].Estuarine,Coastal and Shelf Science,2007,71(1/2):98-109.

[22] Conchedda G,Durieux L,Mayaux P.An object-based method for mapping and change analysis in mangrove ecosystems[J].ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(5):578- 589.

[23] Vaiphasa C,Skidmore A K,De Boer W F.A post-classifier for mangrove mapping using ecological data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(1):1-10.

[24] 李姗姗,田庆久.北部湾红树林的HJ星多光谱遥感提取模式[J].中国科学:信息科学,2011,41(S1):153-165. Li S S,Tian Q J.Mangrove extraction mode based on HJ multispectral remote sensing in Beibu Gulf[J].Scientia Sinica:Informationis,2011,41(S1):153-165.

[25] 肖海燕,曾辉,昝启杰,等.基于高光谱数据和专家决策法提取红树林群落类型信息[J].遥感学报,2007,11(4):531-537. Xiao H Y,Zeng H,Zan Q J,et al.Decision tree model in extraction of mangrove community information using hyperspectral image data[J].Journal of Remote Sensing,2007,11(4):531-537.

[26] Wang L,Sousa W P,Gong P,et al.Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama[J].Remote Sensing of Environment,2004,91(3/4):432-440.

[27] Kovacs J M,Wang J F,Flores-Verdugo F.Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon,Mexican Pacific[J].Estuarine,Coastal and Shelf Science,2005,62(1/2):377-384.

[28] Proisy C,Couteron P,Fromard F.Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images[J].Remote Sensing of Environment,2007,109(3):379-392.

[29] Saleh M A.Assessment of mangrove vegetation on Abu Minqar island of the Red Sea[J].Journal of Arid Environments,2007,68(2):331-336.

[30] 徐涵秋,唐菲.新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J].生态学报,2013,33(11):3249-3257. Xu H Q,Tang F.Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance[J].Acta Ecologica Sinica,2013,33(11):3249-3257.

[31] Wilson E H,Sader S A.Detection of forest harvest type using multiple dates of Landsat TM imagery[J].Remote Sensing of Environment,2002,80(3):385-396.

[32] Gao B C.NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space[J].Remote Sensing of Environment,1996,58(3):257-266.

[33] Jackson T J,Chen D Y,Cosh M,et al.Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans[J].Remote Sensing of Environment,2004,92(4):475-482.

[34] Chen D Y,Huang J F,Jackson T J.Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands[J].Remote Sensing of Environment,2005,98(2/3):225-236.

[35] Huang J F,Chen D Y,Cosh M H.Sub-pixel reflectance unmixing in estimating vegetation water content and dry biomass of corn and soybeans cropland using normalized difference water index(NDWI) from satellites[J].International Journal of Remote Sensing,2009,30(8):2075-2104.

[36] Lacaux J P,Tourre Y M,Vignolles C,et al.Classification of ponds from high-spatial resolution remote sensing:Application to rift valley fever epidemics in senegal[J].Remote Sensing of Environment,2007,106(1):66-74.

[37] 梁士楚.广西英罗湾红树植物群落的研究[J].植物生态学报,1996,20(4):310-321. Liang S C.Studies on the mangrove communities in Yingluo Bay of Guangxi[J].Acta Phytoecologica Sinica,1996,20(4):310-321.

[38] Chavez Jr P S.An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data[J].Remote Sensing of Environment,1988,24(3):459-479.

[39] Chavez P S.Image-based atmospheric corrections:Revisited and improved[J].Photogrammetric Engineering and Remote Sensing,1996,62(9):1025-1036.

[1] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[2] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[3] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[4] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[5] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[6] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[7] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[8] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[9] SHU Huiqin, FANG Junyong, LU Peng, GU Wanfa, WANG Xiao, ZHANG Xiaohong, LIU Xue, DING Lanpo. Research on fine recognition of site spatial archaeology based on multisource high-resolution data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 162-171.
[10] XIAO Yan, XIN Hongbo, WANG Bin, CUI Li, JIANG Qigang. Hyperspectral estimation of black soil organic matter content based on wavelet transform and successive projections algorithm[J]. Remote Sensing for Land & Resources, 2021, 33(2): 33-39.
[11] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[12] HAN Yanling, CUI Pengxia, YANG Shuhu, LIU Yekun, WANG Jing, ZHANG Yun. Classification of hyperspectral image based on feature fusion of residual network[J]. Remote Sensing for Land & Resources, 2021, 33(2): 11-19.
[13] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[14] SUN Ke. Remote sensing image classification based on super pixel and peak density[J]. Remote Sensing for Land & Resources, 2020, 32(4): 41-45.
[15] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech