Please wait a minute...
 
Remote Sensing for Land & Resources    2021, Vol. 33 Issue (1) : 138-144     DOI: 10.6046/gtzyyg.2020095
|
The estimation of soil calcium carbonate content based on Hyperspectral data
WU Qian(), JIANG Qigang(), SHI Pengfei, ZHANG Lili
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Download: PDF(4841 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Carbonate content in soil is an important basis for soil classification and fertility evaluation. Based on an analysis of calcium carbonate content, the authors chose 78 soil samples from Loess Plateau of Shaanxi Province as the research objects. The visible near infrared hyperspectral reflectance (350~2 500 nm) data of soil samples were obtained by hyperspectral imager. Three mathematical transformations, i.e., first-order differentiation, second-order differentiation and continuum removal, were carried out on the original spectral curve, and correlation analysis was used. The method and the continuous projection algorithm were used to select the sensitive band respectively, and the Stochastic Forest regression was used to establish the estimation model of soil calcium carbonate. According to the results obtained, the spectral curve characteristics of Huangmian soil are almost the same, there are obvious absorption characteristics at 1 440 nm, 1 900 nm, 2 200 nm and so on, and the calcium carbonate content and spectral reflectance show a positive correlation trend; the accuracy of random forest estimation model based on the second-order differential and continuous projection algorithm is the highest, the validation set R 2 is 0.82, and the PRD value is 2.37.

Keywords calcium carbonate      Huangmian soil      hyperspectral      continuous projection algorithm      random forest regression     
ZTFLH:  TP79  
Corresponding Authors: JIANG Qigang     E-mail: 1148545835@qq.com;jiangqigang@jlu.edu.cn
Issue Date: 18 March 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qian WU
Qigang JIANG
Pengfei SHI
Lili ZHANG
Cite this article:   
Qian WU,Qigang JIANG,Pengfei SHI, et al. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020095     OR     https://www.gtzyyg.com/EN/Y2021/V33/I1/138
Fig.1  Location of the study area and the distribution of sampling sites
样本集 数目 最小值/(g·kg-1) 最大值/(g·kg-1) 平均值/(g·kg-1) 标准差 偏度 变异系数/%
建模样本 52 11.109 173.509 85.365 28.262 0.457 44.82
验证样本 22 11.236 175.077 87.607 8 33.798 0.253 49.99
总样本 74 11.109 175.077 86.362 30.536 0.354 46.94
Tab.1  Statistics of calcium carbonate in soil samples
Fig.2  Reflectance maps of calcium carbonate content of samples
Fig.3  Sensitive band screening graph based on correlation analysis
Fig.4  Sensitive band selection based on successive projections algorithm
模型 波段选取方法 建模波段数 建模集 验证集
R2 RMSE R2 RMSEp RPD
RFR- R CA 54 0.59 20.43 0.41 25.22 1.43
SPA 17 0.60 20.03 0.51 22.56 1.49
RFR- R' CA 82 0.76 19.19 0.68 19.94 1.88
SPA 9 0.79 17.56 0.73 16.56 2.32
RFR- R″ CA 54 0.74 12.36 0.70 13.45 2.21
SPA 16 0.89 11.25 0.82 12.79 2.37
RFR- CR CA 44 0.71 14.28 0.58 18.62 1.83
SPA 15 0.68 17.11 0.69 19.64 1.88
Tab.2  RSR models for soil calcium carbonate content based on sensitive bands
Fig.5  Fitting graph of measured value and predicted value of four mathematical transformations RFR model based on SPA
[1] 赵其国, 史学正. 土壤资源概论[M]. 北京: 科学出版社科学, 2017: 15-20.
[1] Zhao Q G, Shi X Z. Introduction to soil resources[M]. Beijing: Science Press, 2017: 15-20.
[2] 陈留美, 张甘霖. 滨海沉积物发育的水稻土时间序列母质均一性判定与特性演变[J]. 土壤学报, 2009,46(5):753-763.
[2] Chen L M, Zhang G L. Determination of parent material homogeneity and evolution of characteristics of paddy soils developed in coastal sediments[J]. Soil Journal, 2009,46(5):753-763.
[3] 张宁, 何兴东, 邬畏. 腾格里沙漠3种土壤有机质和碳酸钙特征[J]. 生态学报, 2009,29(8):4095-4101.
[3] Zhang N, He X D, Wu W. Characteristics of organic matter and calcium carbonate in three soils of Tengger Desert[J]. Acta Ecologica, 2009,29(8):4095-4101.
[4] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016,20(5):689-707.
[4] Tong Q X, Zhang B, Zhang L F. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016,20(5):689-707.
[5] Gaffey S J. Spectral reflectance of carbonate minerals in visible and near infrared(0.35~2.55 μm):A nhydrous carbonate minerals[J]. Journal of Geophysical Research, 1987,92:1429— 1440.
[6] 张婷婷. 基于PLS模型的农业土壤成分高光谱遥感反演研究[D]. 长春:吉林大学, 2010.
[6] Zhang T T. Partial least squares modeling of hyperspectral remote sensing for mapping agricultural soil properties[D]. Changchun:Jilin University, 2010.
[7] Stenberg B, Viscarra Rossel R A, Mouazen A M, et al. Visible and near infrared spectroscopy in soil science[J]. Advances in A gronomy, 2010,107:163— 215.
[8] Sexton J, Laake P. Standard errors for bagged and random forest estimators[J]. Computational Statistics & Data Analysis, 2009,53(3):801-811.
[9] 宋建国, 高强山, 李哲. 随机森林回归在地震储层预测中的应用[J]. 石油地球物理勘探, 2016,51(6):1203-1211.
[9] Song J G, Gao Q S, Li Z. Application of stochastic forest regression in seismic reservoir prediction[J]. Petroleum Geophysical Exploration, 2016,51(6):1203-1211.
[10] 秦倩如. 基于高光谱的陕西省土壤游离铁与碳酸钙含量预测研究[D]. 杨凌:西北农林科技大学, 2019.
[10] Qin Q R. Prediction of soil free iron and calcium carbonate content based on hyperspectral data in Shaanxi Province[D]. Yang Ling:Northwest Agricultural and Forestry University of Science and Technology, 2019.
[11] 单海滨, 蒋平安, 颜安, 等. 基于高光谱的北疆绿洲农田灰漠土有机质反演[J]. 农业资源与环境学报, 2018,35(3):276-282.
[11] Shan H B, Jiang P A, Yan A, et al. Hyperspectral retrieval of organic matter in grey desert soil of oasis farmland in Northern Xinjiang[J]. Journal of Agricultural Resources and Environment, 2018,35(3):276-282.
[12] Araújo M C U, Saldanha T C B, Galvão R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2001,57(2):65-73.
[13] 杨红云, 周琼, 杨珺, 等. 基于高光谱的水稻叶片氮素营养诊断研究[J]. 浙江农业学报, 2019,31(10):1575-1582.
[13] Yang H Y, Zhou Q, Yang J, et al. Hyperspectral diagnosis of nitrogen nutrition in rice leaves[J]. Zhejiang Journal of Agriculture, 2019,31(10):1575-1582.
[14] 李勋兰, 易时来, 何绍兰, 等. 高光谱成像技术的柚类品种鉴别研究[J]. 光谱学与光谱分析, 2015,35(9):2639-2643.
pmid: 26669182
[14] Li X L, Yi S L, He S L, et al. Identification of pummelo cultivars based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2015,35(9):2639-2643.
pmid: 26669182 url: https://www.ncbi.nlm.nih.gov/pubmed/26669182
[15] 秦倩如, 齐雁冰, 吴娟, 等. 基于高光谱的土壤游离铁随机森林模型估算研究[J]. 土壤通报, 2018,49(6):1286-1293.
[15] Qin Q R, Qi Y B, Wu J, et al. Estimation of soil free iron random forest model based on hyperspectral data[J]. Soil Bulletin, 2018,49(6):1286-1293.
[16] 彭杰, 周清, 张杨珠, 等. 有机质对土壤光谱特性的影响研究[J]. 土壤学报, 2013,50(3):517-524.
[16] Peng J, Zhou Q, Zhang Y Z, et al. Effect of soil organic m atter on spectral characteristics of soil[J]. Acta Pedologica Sinica, 2013,50(3):517-524.
[17] 洪长桥, 郑光, 陈昌春. 苏北滨海土壤碳酸钙含量反射光谱估算研究[J]. 土壤学报, 2016,53(5):1121-1129.
[17] Hong C Q, Zheng G, Chen C C. Study on reflectance spectrum estimation of calcium carbonate content in coastal soil of Northern Jiangsu[J]. Journal of Soil Science, 2016,53(5):1121-1129.
[18] 张东, 张飞, 等. 分数阶微分在盐渍土高光谱数据预处理中的应用[J]. 农业工程学报, 2014,30(24):151-160.
[18] Zhang D, Zhang F, et al. Application of fractional differential in preprocessing hyperspec-tral data of saline soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(24):151-160.
[19] Gomez C, Philippe L, Guillaume C. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements[J]. Geoderma, 2008,148(2):141-148.
[1] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[2] ZHANG Guojian, LIU Shengzhen, SUN Yingjun, YU Kaijie, LIU Lina. Hyperspectral anomaly detection based on the weakly supervised robust autoencoder[J]. Remote Sensing for Natural Resources, 2023, 35(2): 167-175.
[3] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[4] ZHANG Pengqiang, GAO Kuiliang, LIU Bing, TAN Xiong. Classification of hyperspectral images based on deep Transformer network combined with spatial-spectral information[J]. Remote Sensing for Natural Resources, 2022, 34(3): 27-32.
[5] SUN Xiao, XU Linlin, WANG Xiaoyang, TIAN Ye, WANG Wei, ZHANG Zhongyue. Mineral identification from hyperspectral images based on the optimized K-P-Means unmixing method[J]. Remote Sensing for Natural Resources, 2022, 34(3): 43-49.
[6] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[7] SUN Xiao, PENG Junhuan, ZHAO Feng, WANG Xiaoyang, LYU Jie, ZHANG Dengfeng. Principal component selection method for hyperspectral remote sensing images based on spatial statistics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 37-46.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] QU Haicheng, WAND Yaxuan, SHEN Lei. Hyperspectral super-resolution combining multi-receptive field features with spectral-spatial attention[J]. Remote Sensing for Natural Resources, 2022, 34(1): 43-52.
[10] CHEN Jie, ZHANG Lifu, ZHANG Linshan, ZHANG Hongming, TONG Qingxi. Research progress on online monitoring technologies of water quality parameters based on ultraviolet-visible spectra[J]. Remote Sensing for Natural Resources, 2021, 33(4): 1-9.
[11] GAO Wenlong, ZHANG Shengwei, LIN Xi, LUO Meng, REN Zhaoyi. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
[12] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[13] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[14] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[15] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech