Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 167-173     DOI: 10.6046/gtzyyg.2019.04.22
|
Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake
Xiaoqi MA1,2, Shanlong LU1(), Jin MA3, Liping ZHU4
1. Key Laboratory of Digital Earth Institute, State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
3. College of Information Science and Engineering, Shandong Agricultural University, Taian 271018, China
4. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Download: PDF(3263 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Lake water reserves are often estimated according to water level observation and manually-measured underwater topography data. As for the lakes which lack data, it is really difficult to obtain the information of lake water reserves. In order to explore the solution of this problem, the authors chose the Nam Co Lake in Tibet as a study case. Based on the features of topography similarities between the above lake level and the under lake level, the authors made use of SRTM DEM of above the lake level to construct the relationship between the elevation and the area, the area and the volume increment. In turn, the elevation-area-volume increment of the lake's underwater was recalculated. Finally, the authors constructed the area-volume model to calculate the lake water reserves. The result shows that the calculation is of high relative accuracy. According to the area of the lake by using the DEM of the Nam Co Lake basin,the authors calculated the lake water reserves, which reach 111.570 billion m 3. This result is compared with the calculated water reserves of 101.950 billion m 3 in the Nam Co Lake underwater terrain digital elevation model established based on measured water depth data, and its absolute error is 9.620 billion m 3 whereas its relative error is 9.40%. The results obtained by the authors provide a reference for the estimation of natural lake water reserves with consistent water and underwater topographic parameters in data-absent areas.

Keywords DEM      water reserves      no data area      lakes      Nam Co Lake     
:  P237  
  TP79  
Corresponding Authors: Shanlong LU     E-mail: lusl@radi.ac.cn
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiaoqi MA
Shanlong LU
Jin MA
Liping ZHU
Cite this article:   
Xiaoqi MA,Shanlong LU,Jin MA, et al. Lake water storage estimation method based on topographic parameters: A case study of Nam Co Lake[J]. Remote Sensing for Land & Resources, 2019, 31(4): 167-173.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.22     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/167
Fig.1  Lake water volume estimation model based on lake basin similarity
Fig.2  Process of the proposed method
Fig.3  Contour of 4 724 m and 4 748 m and of Nam Co Lake and the maximum water surface in 2008
高程/m 面积/km2 体积/亿m3 体积增量/亿m3
4 724 1 944.30 0.01 0.01
4 725 1 968.08 19.57 19.56
4 726 1 984.79 39.29 19.72
4 727 2 001.32 59.19 19.90
4 728 2 018.35 79.27 20.08
4 729 2 036.24 99.53 20.26
4 730 2 054.75 119.97 20.44
4 731 2 073.05 140.59 20.62
4 732 2 091.12 161.41 20.82
4 733 2 108.66 182.39 20.98
4 734 2 126.04 203.55 21.16
4 735 2 146.12 224.89 21.34
4 736 2 165.76 246.44 21.55
4 737 2 185.40 268.18 21.74
4 738 2 204.70 290.13 21.95
4 739 2 223.20 312.27 22.14
4 740 2 242.33 334.59 22.32
4 741 2 263.04 357.12 22.53
4 742 2 285.53 379.85 22.73
4 743 2 308.85 402.82 22.97
4 744 2 330.95 426.03 23.21
4 745 2 351.10 449.44 23.41
4 746 2 369.28 473.05 23.61
4 747 2 385.34 496.83 23.74
4 748 2 395.55 520.76 23.93
Tab.1  Calculated volumes in different elevation related to 4 724 m of Nam Co Lake
Fig.4  Functional relationship between elevation and surface area in different location above 4 724 m
Fig.5  Functional relationship between surface area and volume increment in different elevation
Fig.6  Relationship between area and volume
Fig.7  Underwater topography of Nam Co Lake
Fig.8  Errors between model calculated and TIN derived surface areas in different water depths
Fig.9  Errors between the model calculated and TIN derived volumes in different water depths and related changed volumes
[1] Medina C, Gomez-Enri J, Alonso J J , et al. Water volume variations in Lake Izabal (Guatemala) from in situ measurements and ENVISAT Radar altimeter (RA-2) and advanced synthetic aperture Radar (ASAR) data products[J]. Journal of Hydrology, 2010,382(1-4):34-48.
[2] Brooks R T, Hayashi M . Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England[J]. Wetlands, 2002,22(2):247-255.
[3] Gleason R A, Tangen B A, Laubhan M K , et al. Estimating Water Storage Capacity of Existing and Potentially Restorable Wetland Depressions in a Subbasin of the Red River of the North[R]. USGS Northern Prairie Wildlife Research Center, 2007.
[4] Lane C R, D’Amico E .Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida,USA[J]. Wetlands, 2010,30(5):967-977.
[5] Zhang B, Wu Y, Zhu L , et al. Estimation and trend detection of water storage at Nam Co Lake,central Tibetan Plateau[J]. Journal of Hydrology, 2011,405(1-2):161-170.
[6] Heathcote A J, del Giorgio P A, Prairie Y T . Predicting bathymetric features of lakes from the topography of their surrounding landscape[J]. Canadian journal of fisheries and aquatic sciences, 2015,72(5):643-650.
[7] Sobek S, Nisell J, Fölster J . Predicting the depth and volume of lakes from map-derived parameters[J]. Inland Waters, 2011,1(3):177-184.
[8] Messager M L, Lehner B, Grill G , et al. Estimating the volume and age of water stored in global lakes using a geo-statistical approach[J]. Nature communications, 2016,7:13603.
[9] Liao J, Shen G, Li Y . Lake variations in response to climate change in the Tibetan Plateau in the past 40 years[J]. International Journal of Digital Earth, 2013,6(6):534-549.
[10] Yang R, Zhu L, Wang J , et al. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013[J]. Climatic Change, 2017,140(3-4):621-633.
[11] 朱立平, 乔宝晋, 杨瑞敏 , 等. 青藏高原湖泊水量与水质变化的新认知[J]. 自然杂志, 2017,39(3):166-172.
[11] Zhu L P, Qiao B J, Yang R M , et al. A new cognition of the variation of water and water quality in the Qinghai-Tibet Plateau[J]. Chinese Journal of Nature, 2017,39(3):166-172.
[12] Qiao B, Zhu L, Wang J , et al. Estimation of lakes water storage and their changes on the northwestern Tibetan Plateau based on bathymetric and Landsat data and driving force analyses[J]. Quaternary International, 2017,454:56-67.
[13] Song C, Huang B, Ke L . Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 2013,135:25-35.
[14] 关志华, 陈传友, 区裕雄 , 等. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984.
[14] Guan Z H, Chen C Y, Ou Y X , et al. Rivers and Lakes in Tibet[M]. Beijing: Science and Technology Press, 1984.
[15] 卢善龙, 肖高怀, 贾立 , 等. 2000—2012年青藏高原湖泊水面时空过程数据集遥感提取[J]. 国土资源遥感, 2016,28(3):181-187.doi: 10.6046/gtzyyg.2016.03.28.
doi: 10.6046/gtzyyg.2016.03.28
[15] Lu S L, Xiao G H, Jia L , et al. Extraction of the spatial-temporal lake water surface dataset in the Tibetan Plateau over the past 10 years[J]. Remote Sensing for Land and Resources, 2016,28(3):181-187.doi: 10.6046/gtzyyg.2016.03.28.
[16] Wang J B, Zhu L P, Daut G , et al. Investigation of bathymetry and water quality of Lake Nam Co,the largest lake on the central Tibetan Plateau,China[J]. Limnology, 2009,10(2):149-158.
[17] Rabus B, Eineder M, Roth A , et al. The shuttle Radar topography mission:A new class of digital elevation models acquired by spaceborne Radar[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003,57(4):241-262.
[18] van Zyl J J . The shuttle Radar topography mission (SRTM):A breakthrough in remote sensing of topography[J]. Acta Astronautica, 2001,48(5-12):559-565.
[19] Slater J A, Garvey G, Johnston C , et al. The SRTM data “finishing” process and products[J]. Photogrammetric Engineering and Remote Sensing, 2006,72(3):237-247.
[20] 李炳元 . 青藏高原大湖期[J].地理学报,2000(2):174-182.
[20] Li B Y . The great lake period of the Qinghai-Tibet Plateau[J].Acta Geographica Sinica,2000(2):174-182.
[21] 蒋瑛 . 基于RS和GIS的青藏高原高湖面与现在湖面对比研究[D]. 西宁:青海师范大学, 2013.
[21] Jiang Y . Using RS and GIS Research of Comparison Between the Ancient Lake Level and the Lake Level Nowadays on Qinghai-Tibet Plateau[D]. Xining:Qinghai Normal University, 2013.
[22] 马荣华, 杨桂山, 段洪涛 , 等. 中国湖泊的数量,面积与空间分布[J]. 中国科学(地球科学), 2011,41(3):394-401.
[22] Ma R H, Yang G S, Duan H T , et al. China’ s lakes at present:Number,area and spatial distribution[J]. Science China Earth Sciences, 2011,41(3):394-401.
[1] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[2] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[3] QIN Qiming, CHEN Jin, ZHANG Yongguang, REN Huazhong, WU Zihua, ZHANG Chishan, WU Linsheng, LIU Jianli. A discussion on some frontier directions of quantitative remote sensing[J]. Remote Sensing for Land & Resources, 2020, 32(4): 8-15.
[4] Kaixuan LIANG, Guifang ZHANG, Haoran ZHANG. A method for extracting alluvial fan based on DEM and remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 138-145.
[5] Quan AN, Zhonghua HE, Cuiwei ZHAO, Hong LIANG, Shulin JIAO, Chaohui YANG. GIS-based estimation of fractal dimension and geomorphological development of the water system in the dam construction area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 104-111.
[6] Zongli JIANG, Junli ZHANG, Zhen ZHANG, Shiyin LIU, Junfeng WEI, Wanqin GUO, Chuanguang ZHU, Danni HUANG. Glacier change and mass balance (1972—2011) in Ulugh Muztagh,eastern Kunlun Mountains, monitored by remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 128-136.
[7] Tao CHENG, Guangyong LI, Kai BI. Research on the geospatial correction method of water extracting products considering the characteristics of time points[J]. Remote Sensing for Land & Resources, 2019, 31(2): 96-101.
[8] Qun WANG, Jinghui FAN, Wei ZHOU, Weilin YUAN, Liqiang TONG, Zhaocheng GUO. Research on the DEM-assisted offset tracking technique applied to glaciers movement monitoring[J]. Remote Sensing for Land & Resources, 2018, 30(3): 167-173.
[9] Gang LIU, Yunpeng YAN, Jianyu LIU. Research on relationship between lakes and tectonic background in western Tibetan Plateau using remote sensing[J]. Remote Sensing for Land & Resources, 2018, 30(2): 154-161.
[10] YU Zhoulu, WANG Wenchao, RONG Yi, SHEN Zhangquan. Sub-pixel mapping of land cover using sub-pixel swapping algorithm and topographic data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(4): 88-97.
[11] CHU Duo, DA Wa, LABA Zhuoma, XU Weixin, ZHANG Juan. An analysis of spatial-temporal distribution features of snow cover over the Tibetan Plateau based on MODIS data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 117-124.
[12] YU Haiyang, LUO Ling, MA Huihui, LI Hui. Application appraisal in catchment hydrological analysis based on SRTM 1 Arc-Second DEM[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 138-143.
[13] SU Yuanyuan, ZHANG Jingfa, HE Zhongtai, JIANG Wenliang, JIANG Hongbo, LI Qiang. Assessment of applying ZY-3 DEM data to quantitative study of active structures[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 122-130.
[14] SUN Yafei, JIANG Liming, LIU Lin, SUN Yongling, WANG Hansheng. TanDEM-X bistatic SAR interferometry and its research progress[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 16-22.
[15] WU Fang, ZHANG Zonggui, GUO Zhaocheng, AN Zhihong, YU Kun, LI Ting. Method of deriving DEM in the mining area based on filtering of airborne LiDAR data[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(1): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech