|
|
|
|
|
|
Medium resolution remote sensing based winter wheat mapping corrected by low-resolution time series remote sensing images |
Shuang ZHU1,2, Jinshui ZHANG2,3,4( ) |
1. Beijing Polytechnic College, Beijing 100042, China 2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China 3. Beijing Engineering Research Center for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 4. Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China |
|
|
Abstract Owing to influences of the same spectrum with the different thing and the same thing with the different spectrum, the medium resolution remotely sensed image, Landsat8 OLI, extracts the wheat extraction with the wrong information, which leads to low accuracy. The coarse resolution image with multi-temporal trait can discriminate the wheat information from other similar land cover. In this paper, the multi-temporal trait is adopted to solve the “wrong coming or wrong going” error of the OLI classification so as to increase the wheat extraction accuracy. The experiment shows that the OLI and MODIS can extract the wheat with high consistence, so the result of MODIS can correct the error of the OLI, where the phenomenon of the same spectrum with the different thing and the same thing with the different spectrum occurs. In the region of the same thing with different spectrum, the RMSE of OLI result is 0.758, while that of the MODIS correction result is 0.142. In the region of the different thing with the same spectrum, the RMSE of OLI result is 0.901, while that of the MODIS correction result is 0.122. All the results show that the MODIS result can correct OLI result for higher wheat extraction accuracy, which can solve the phenomenon of the same spectrum with the different thing and the same thing with the different spectrum.
|
Keywords
time series
linear mixed spectral unmixing
fraction
consistency analysis
rectification
|
|
Corresponding Authors:
Jinshui ZHANG
E-mail: zhangjs@bnu.edu.cn
|
Issue Date: 14 March 2020
|
|
|
[1] |
Lobell D B, Asner G P . Cropland distributions from temporal unmixing of MODIS data[J]. Remote Sensing of Environment, 2004,93(3):412-422.
|
[2] |
王利民, 刘佳, 杨玲波 , 等. 短波红外波段对玉米大豆种植面积识别精度的影响[J]. 农业工程学报, 2016,32(19):169-178.
|
[2] |
Wang L M, Liu J, Yang L B , et al. Impact of short infrared wave band on identification accuracy of corn and soybean area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(19):169-178.
|
[3] |
朱爽, 张锦水, 崔有祯 . 剖线强度梯度变化的作物软硬变化区精确划分[J]. 中国农业资源与区划, 2018,39(7):38-42.
|
[3] |
Zhu S, Zhang J S, Cui Y Z . Soft and hard change region identification of crop by profile based gradient change magnitude method[J]. Chinese Journal of Agricultural Resources and Regional Planning. 2018,39(7):38-42
|
[4] |
Pan Y Z, Hu T G, Zhu X F , et al. Mapping cropland distributions using a hard and soft classification model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(11):4301-4312.
|
[5] |
Prakash A, Gupta R P . Land-use mapping and change detection in a coal mining area:A case study in the Jharia coalfield,India[J]. International Journal of Remote Sensing, 1998,19(3):391-410.
|
[6] |
Weismiller R A, Kristof S J, Scholz D K , et al. Change detection in coastal zone environments[J]. Photogrammetric Engineering and Remote Sensing, 1977,43(12):1533-1539.
|
[7] |
Bruzzone L, Prieto D F . A minimum-cost thresholding technique for unsupervised change detection[J]. International Journal of Remote Sensing, 2000,21(18):3539-3544.
|
[8] |
李苓苓, 潘耀忠, 张锦水 , 等. 支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法[J]. 农业工程学报, 2010,26(9):210-217.
|
[8] |
Li L L, Pan Y Z, Zhang J S , et al. Method of winter wheat planting area estimation based on support vector machine and post-classification changed vector analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(9):210-217.
|
[9] |
朱爽, 张锦水 . 地块破碎度对软硬变化检测法识别冬小麦分布精度的影响[J]. 农业工程学报, 2016,32(10):164-171.
|
[9] |
Zhu S, Zhang J S . Impact of land fragmentation on identification of winter wheat distribution accuracy by soft and hard change detection method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(10):164-171.
|
[10] |
Stefanov W L, Ramsey M S, Christensen P R . Monitoring urban land cover change:An expert system approach to land cover classification of semiarid to arid urban centers[J]. Remote Sensing of Environment, 2001,77(2):173-185.
|
[11] |
赵敏, 赵银娣 . 面向对象的多特征分级CVA遥感影像变化检测[J]. 遥感学报, 2018,22(1):119-131.
|
[11] |
Zhao M, Zhao Y D . Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery[J]. Journal of Remote Sensing, 2018,22(1):119-131.
|
[12] |
谢登峰, 张锦水, 潘耀忠 , 等. Landsat8和MODIS融合构建高时空分辨率数据识别秋粮作物[J]. 遥感学报, 2015,19(5):791-805.
|
[12] |
Xie D F, Zhang J S, Pan Y Z , et al. Fusion of MODIS and Landsat8 images to generate high spatial-temporal resolution data for mapping autumn crop distribution[J]. Journal of Remote Sensing, 2015,19(5):791-805.
|
[13] |
Yu W Y, Qi Y B, Wei F , et al. The impact of FDD rotation mode and irrigation methods on rice irrigation water efficiency in southwestern China[J]. Resources Science, 2017,39(6):1127-1136.
|
[14] |
任建强, 陈仲新, 周清波 , 等. MODIS植被指数的美国玉米单产遥感估测[J]. 遥感学报, 2015,19(4):568-577.
|
[14] |
Ren J Q, Chen Z X, Zhou Q B , et al. MODIS vegetation index data used for estimating corn yield in USA[J]. Journal of Remote Sensing, 2015,19(4):568-577.
|
[15] |
顾晓鹤, 潘耀忠, 朱秀芳 , 等. MODIS与TM冬小麦种植面积遥感测量一致性研究——小区域实验研究[J]. 遥感学报, 2007,11(3):350-358.
|
[15] |
Gu X H, Pan Y Z, Zhu X F , et al. Consistency study between MODIS and OLI on winter wheat plant area monitoring:A case in small area[J]. Journal of Remote Sensing, 2007,11(3):350-358.
|
[16] |
朱爽, 张锦水, 帅冠元 , 等. 通过软硬变化检测识别冬小麦[J]. 遥感学报, 2014,18(2):476-496.
|
[16] |
Zhu S, Zhang J S, Shuai G Y , et al. Winter wheat mapping by soft and hard land use/cover change detection[J]. Journal of Remote Sensing, 2014,18(2):476-496
|
[17] |
Mountrakis G, Im J, Ogole C . Support vector machines in remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011,66(3):247-259.
|
[18] |
Zhang L F, Jiao W Z, Zhang H M , et al. Studying drought phenomena in the continental United States in 2011 and 2012 using various drought indices[J]. Remote Sensing of Environment, 2017,190:96-106.
|
[19] |
Amani M, Salehi B, Mahdavi S , et al. Temperature-vegetation-soil moisture dryness index (TVMDI)[J]. Remote Sensing of Environment, 2017,197:1-14.
|
[20] |
Wang L J, Guo N, Wang X P , et al. Effects of spatial resolution for evapotranspiration estimation by using the triangular method over heterogeneous underling surface[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(6):2518-2527.
|
[21] |
Ghaffari O, Zoej M J V, Mokhtarzade M . Reducing the effect of the endmembers’ spectral variability by selecting the optimal spectral bands[J]. Remote Sensing, 2017,9(9):99-112.
|
[22] |
Bangira T, Alfieri S M, Menenti M , et al. A spectral unmixing method with ensemble estimation of endmembers:Application to flood mapping in the Caprivi floodplain[J]. Remote Sensing, 2017,9(10):472-484.
|
[23] |
Ma T, Li R, Svenning J , et al. Linear spectral unmixing using endmember coexistence rules and spatial correlation[J]. International Journal of Remote Sensing, 2018,39(11):3512-3536.
|
[24] |
陈晋, 马磊, 陈学泓 , 等. 混合像元分解技术及其进展[J]. 遥感学报, 2016,20(5):1102-1109.
|
[24] |
Chen J, Ma L, Chen X H , et al. Research progress of spectral mixture analysis[J]. Journal of Remote Sensing, 2016,20(5):1102-1109.
|
[25] |
蓝金辉, 邹金霖, 郝彦爽 , 等. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 2018,22(1):13-27.
|
[25] |
Lan J H, Zou J L, Hao Y S , et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. Journal of Remote Sensing, 2018,22(1):13-27.
|
[26] |
张春森, 郑艺惟, 黄小兵 , 等. 高光谱影像光谱-空间多特征加权概率融合分类[J]. 测绘学报, 2015(8):909-918.
|
[26] |
Zhang C L, Zheng Y W, Huang X B , et al. Hyperspectral image classification based on weighted probabilistic fusion of multiple spectral-spatial features[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(8):909-918.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|