Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 34-42     DOI: 10.6046/zrzyyg.2022484
|
Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis
CAO Delong1(), LIN Zhen1, TANG Tingyuan2, LI Chuyu2(), WANG Xiaorui2
1. Academy of Ecological Civilization, Beijing Forestry University, Beijing 100083, China
2. Beijing Institute of Surveying and Mapping, Beijing 100038, China
Download: PDF(3781 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The combination of remote sensing and deep learning is efficient in the monitoring and evaluation of natural resources. Based on the comprehensive consideration of the characteristics of Zhuhai-1 OHS hyperspectral images, this study established the 3D-HRNet architecture by introducing the 3D convolutional module into the HRNet architecture and applied it to the semantic segmentation model for natural resources survey and monitoring. Using remote sensing images, this study established an ecological index (EI) evaluation model by calculating the species richness index, vegetation index, water network density index, land stress index, pollution load index, and environmental regulation index. Then, the model was employed to monitor and evaluate the natural resources in partial areas in the northern part of Beijing. The results show that: ① when being used to extract the natural resources, the 3D-HRNet model yielded average overall accuracy, a F1 score, and a Kappa coefficient of 0.83, 0.83, and 0.73, respectively, which were 0.04, 0.04, and 0.06 higher than those of the HRNet model, and 0.04, 0.05 and 0.06 higher than those of 3D-CNN model, respectively. This suggests that the 3D-HRNet model can extract natural resources from hyperspectral images more effectively than the HRNet model. In other words, the 3D convolutional module can utilize the inter-hyperspectral features to extract information more effectively; ② The eco-environment of partial areas in north Beijing in 2020 was evaluated using the EI evaluation model, with an average EI value of 68.2. This reflects a good ecological state in the study area, highly consistent with the conclusion of the Report on the State of the Ecology and Environment in Beijing, demonstrating the feasibility of remote sensing for ecological assessment. Therefore, this study provides an innovative method for the spatio-temporal analysis of the regional ecological state.

Keywords 3D-HRNet      Zhuhai-1 OHS hyperspectral image      natural resources survey and monitoring      EI evaluation     
ZTFLH:  TP79  
  P23  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Delong CAO
Zhen LIN
Tingyuan TANG
Chuyu LI
Xiaorui WANG
Cite this article:   
Delong CAO,Zhen LIN,Tingyuan TANG, et al. Application of 3D-HRNet in Zhuhai-1 OHS hyperspectral images for natural resource monitoring and eco-environment analysis[J]. Remote Sensing for Natural Resources, 2023, 35(4): 34-42.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022484     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/34
Fig.1  Research area
Fig.2  Image data and label data
Fig.3  Flow chart
Fig.4  3D-HRNet network structure
植被覆
盖率/%
坡度/(°)
<5 [5,8) [8,15) [15,25) [25,35] >35
<30 轻微 温和 中度 严重 极度严重 剧烈
[30,45) 轻微 温和 中度 中度 严重 极度严重
[45,60) 轻微 温和 温和 中度 中度 严重
[60,75] 轻微 温和 温和 温和 中度 中度
>75 轻微 轻微 轻微 轻微 轻微 轻微
Tab.1  Vegetation coverage, slope and erosion degree relationship
类别 区域一 区域二
真彩色影像
标签数据
HRNet模型预测结果
3D-CNN模型预测结果
3D-HRNet模型预测结果
图例
Tab.2  Comparative table of natural resource monitoring results
模型 指标 区域一 区域二 平均
HRNet模型 召回率 0.78 0.80 0.79
准确率 0.53 0.56 0.55
F1分数 0.77 0.81 0.79
总体精度 0.78 0.80 0.79
Kappa系数 0.61 0.73 0.67
3D-CNN模型 召回率 0.79 0.78 0.78
准确率 0.44 0.55 0.49
F1分数 0.79 0.78 0.78
总体精度 0.80 0.78 0.79
Kappa系数 0.64 0.69 0.67
3D-HRNet模型 召回率 0.86 0.79 0.82
准确率 0.65 0.55 0.60
F1分数 0.86 0.79 0.82
总体精度 0.86 0.79 0.83
Kappa系数 0.75 0.71 0.73
Tab.3  Model accuracy comparison table
Fig.5  Result of each indicator
Fig.6  EI distribution result
[1] Trabelsi M, Mandart E, Le Grusse P, et al. ESSIMAGE:A tool for the assessment of the agroecological performance of agricultural production systems[J]. Environmental Science and Pollution Research, 2019, 26(9):9257-9280.
doi: 10.1007/s11356-019-04387-9
[2] Boeraeve F, Dendoncker N, Cornélis J T, et al. Contribution of agroecological farming systems to the delivery of ecosystem services[J]. Journal of Environmental Management, 2020, 260:109576.
doi: 10.1016/j.jenvman.2019.109576 url: https://linkinghub.elsevier.com/retrieve/pii/S0301479719312940
[3] Aubin J, Callier M, Rey-Valette H, et al. Implementing ecological intensification in fish farming:Definition and principles from contrasting experiences[J]. Reviews in Aquaculture, 2019, 11(1):149-167.
doi: 10.1111/raq.12231
[4] Wei L, Yu M, Zhong Y, et al. Spatial-spectral fusion based on conditional random fields for the fine classification of crops in UAV-borne hyperspectral remote sensing imagery[J]. Remote Sensing, 2019, 11(7):780.
doi: 10.3390/rs11070780 url: https://www.mdpi.com/2072-4292/11/7/780
[5] Uddin M P, Al Mamun M, Ali Hossain M. PCA-based feature reduction for hyperspectral remote sensing image classification[J]. IETE Technical Review, 2021, 38(4):377-396.
doi: 10.1080/02564602.2020.1740615 url: https://www.tandfonline.com/doi/full/10.1080/02564602.2020.1740615
[6] Papp L, van Leeuwen B, Szilassi P, et al. Monitoring invasive plant species using hyperspectral remote sensing data[J]. Land, 2021, 10(1):29.
doi: 10.3390/land10010029 url: https://www.mdpi.com/2073-445X/10/1/29
[7] Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 url: http://ieeexplore.ieee.org/document/7485869/
[8] Liu H, Luo J C, Huang B, et al. DE-net:Deep encoding network for building extraction from high-resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(20):2380.
doi: 10.3390/rs11202380 url: https://www.mdpi.com/2072-4292/11/20/2380
[9] Zhu Q, Liao C, Hu H, et al. MAP-net:Multiple attending path neural network for building footprint extraction from remote sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):6169-6181.
doi: 10.1109/TGRS.2020.3026051 url: https://ieeexplore.ieee.org/document/9212557/
[10] Santara A, Mani K, Hatwar P, et al. BASS net:Band-adaptive spectral-spatial feature learning neural network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9):5293-5301.
doi: 10.1109/TGRS.2017.2705073 url: http://ieeexplore.ieee.org/document/7938656/
[11] Pan B, Shi Z, Xu X. R-VCANet:A new deep-learning-based hyperspectral image classification method[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5):1975-1986.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[12] Chen Y, Jiang H, Li C, et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10):6232-6251.
doi: 10.1109/TGRS.2016.2584107 url: http://ieeexplore.ieee.org/document/7514991/
[13] Li Y, Zhang H, Shen Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1):67.
doi: 10.3390/rs9010067 url: http://www.mdpi.com/2072-4292/9/1/67
[14] 中华人民共和国环境保护部. HJ192—2015 生态环境状况评价技术规范[S]. 北京: 中国环境科学出版社, 2015.
[14] Ministry of Environmental Protection of the People’s Republic of China. HJ192—2015 Technical Criterion for Ecosystem Status Evaluation[S]. Beijing: China Environmental Science Press, 2015.
[15] Ryschawy J, Dumont B, Therond O, et al. Review:An integrated graphical tool for analysing impacts and services provided by livestock farming[J]. animal, 2019, 13(8):1760-1772.
doi: 10.1017/S1751731119000351 pmid: 30827290
[16] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5):889-897.
[16] Xu H Q. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5):889-897.
[17] Wang Q, Gao M, Zhang H. Agroecological efficiency evaluation based on multi-source remote sensing data in a typical county of the Tibetan Plateau[J]. Land, 2022, 11(4):561.
doi: 10.3390/land11040561 url: https://www.mdpi.com/2073-445X/11/4/561
[18] 赵文慧, 李令军, 鹿海峰, 等. 2015—2017年北京及近周边平房燃煤散烧及其污染排放遥感测算[J]. 环境科学, 2019, 40(4):1594-1603.
[18] Zhao W H, Li L J, Lu H F, et al. Estimation of coal consumption and the emission of related contaminants in the plain area around Beijing during 2015—2017[J]. Environmental Science, 2019, 40(4):1594-1603.
[19] 冯天时, 庞治国, 江威. 基于珠海一号高光谱卫星的巢湖叶绿素a浓度反演[J]. 光谱学与光谱分析, 2022, 42(8):2642-2648.
[19] Feng T S, Pang Z G, Jiang W. Remote sensing retrieval of chlorophyll-a concentration in Lake Chaohu based on Zhuhai-1 hyperspectral satellite[J]. Spectroscopy and Spectral Analysis, 2022, 42(8):2642-2648.
[20] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
doi: 10.5194/essd-13-3907-2021 url: https://essd.copernicus.org/articles/13/3907/2021/
[21] Zhang X, Liu L, Wu C, et al. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform[J]. Earth System Science Data, 2020, 12(3):1625-1648.
doi: 10.5194/essd-12-1625-2020 url: https://essd.copernicus.org/articles/12/1625/2020/
[22] Brown C F, Brumby S P, Guzder-Williams B, et al. Dynamic World,Near real-time global 10 m land use land cover mapping[J]. Scientific Data, 2022, 9:251.
doi: 10.1038/s41597-022-01307-4
[23] 陈智朗, 付振华, 朱紫阳, 等. 基于HRNet的高分辨率遥感影像建筑物变化信息提取[J]. 测绘通报, 2022(5):126-132.
doi: 10.13474/j.cnki.11-2246.2022.0153
[23] Chen Z L, Fu Z H, Zhu Z Y, et al. HRNet-based extraction of building change information from high-resolution remote sensing images[J]. Bulletin of Surveying and Mapping, 2022(5):126-132.
doi: 10.13474/j.cnki.11-2246.2022.0153
[24] 张伯树, 张志华, 张洋. 改进的HRNet应用于路面裂缝分割与检测[J]. 测绘通报, 2022(3):83-89.
doi: 10.13474/j.cnki.11-2246.2022.0082
[24] Zhang B S, Zhang Z H, Zhang Y. Improved HRNet applied to segmentation and detection of pavement cracks[J]. Bulletin of Surveying and Mapping, 2022(3):83-89.
doi: 10.13474/j.cnki.11-2246.2022.0082
[25] 粟日, 宋剑, 汪政, 等. 基于3D卷积神经网络的中耳疾病高分辨率CT图像辅助分类诊断模型的应用[J]. 中南大学学报(医学版), 2022, 47(8):1037-1048.
[25] Su R, Song J, Wang Z, et al. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network[J]. Journal of Central South University (Medical Science), 2022, 47(8):1037-1048.
[26] 钟帆, 柏正尧. 采用动态残差图卷积的3D点云超分辨率[J]. 浙江大学学报(工学版), 2022, 56(11):2251-2259.
[26] Zhong F, Bai Z Y. 3D point cloud super-resolution with dynamic residual graph convolutional networks[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(11):2251-2259.
[27] 郑宗生, 刘海霞, 王振华, 等. 改进3D-CNN的高光谱图像地物分类方法[J]. 自然资源遥感, 2023, 35(2):105-111.doi:10.6046/zrzyyg.2022100.
[27] Zheng Z S, Liu H X, Wang Z H, et al. Improved 3D-CNN-based hyperspectral image classification method[J]. Remote Sensing for Natural Resources, 2023, 35(2):105-111.doi:10.6046/zrzyyg.2022100.
[28] 金永涛, 杨秀峰, 高涛, 等. 基于面向对象与深度学习的典型地物提取[J]. 国土资源遥感, 2018, 30(1):22-29.doi:10.6046/gtzyyg.2018.01.04.
[28] Jin Y T, Yang X F, Gao T, et al. The typical object extraction method based on object-oriented and deep learning[J]. Remote Sensing for Land and Resources, 2018, 30(1):22-29.doi:10.6046/gtzyyg.2018.01.04.
[1] WANG Yan, WANG Licheng, WU Jinwen. A review of the estimation methods for daily mean temperatures using remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 1-8.
[2] LI Xintong, SHI Lan, CHEN Duoyan. A deep learning-based study on downscaling of GPM products in Fujian-Zhejiang-Jiangxi area[J]. Remote Sensing for Natural Resources, 2023, 35(4): 105-113.
[3] WANG Ning, JIANG Decai, ZHENG Xiangxiang, ZHONG Chang. Assessing the susceptibility of slope geological hazards based on multi-source heterogeneous data: A case study of Longgang District, Shenzhen City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 122-129.
[4] WANG Yuexiang, CHEN Wanting, ZHU Yuxin, CAI Anning. Urban heat island effects of Nanjing based on urban expansion directions and types derived from remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 130-138.
[5] LIU Xiaomin, AMUGULENG , YANG Yaotian, LIU Yong. Ecological security evaluation of counties/banners in the Yellow River basin in Ordos[J]. Remote Sensing for Natural Resources, 2023, 35(4): 139-148.
[6] LI Na, DONG Xinfeng, WANG Jinglan, CHEN Li, GAN Fuping, LI Tongtong, ZHANG Shifan. Comparative study on atmospheric correction methods for ZY-1 02D hyperspectral data for geological applications[J]. Remote Sensing for Natural Resources, 2023, 35(4): 17-24.
[7] XIAO Hui, LI Huitang, GU Yuehan, SHENG Qinghong. A quality-guided least squares phase unwrapping algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 25-33.
[8] TIAN Zhao, LIANG Ailin. Remote sensing-based monitoring and analysis of residential carbon emissions[J]. Remote Sensing for Natural Resources, 2023, 35(4): 43-52.
[9] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[10] ZHANG Yuantao, PAN Wei, YU Changfa. Application of GF-5 hyperspectral data in uranium deposit exploration[J]. Remote Sensing for Natural Resources, 2023, 35(4): 61-70.
[11] YANG Chiyi, GUAN Haixiang, WU Wei, LIU Meiyu, LI Ying, SU Wei. Remote sensing monitoring method for flooded farmland based on domestic GF-3 radar images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 71-80.
[12] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[13] DENG Dingzhu. Deep learning-based cloud detection method for multi-source satellite remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 9-16.
[14] CHEN Di, PENG Qiuzhi, HUANG Peiyi, LIU Yaxuan. Detecting land for photovoltaic development based on the attention mechanism and improved YOLOv5[J]. Remote Sensing for Natural Resources, 2023, 35(4): 90-95.
[15] WANG Zihao, LI Yikun, LI Xiaojun, YANG Shuwen. Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2023, 35(4): 96-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech