Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (4) : 194-203     DOI: 10.6046/zrzyyg.2024161
|
Analyzing impact of the Beijing-Guangzhou high-speed railway on cities along the Hebei section based on remote sensing monitoring
SU Boxiong1,2(), WU Mingquan1,2(), NIU Zheng1,2, CHEN Fang2,3, HUANG Wenjiang1,2
1. Aerospace Information Research Institute, Key Laboratory of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Digital Earth Science, Chinese Academy of Sciences, Beijing 100094, China
Download: PDF(4837 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

At present, the impacts of high-speed railways (HSRs) on cities along rail lines remain unclear. Previous analyses of these impacts based on remote sensing data focused primarily on qualitative assessment. Given this, this study investigated the Hebei section of the Beijing-Guangzhou HSR and introduced a remote sensing monitoring-based method that integrated qualitative and quantitative analyses for assessing the impacts of HSR on urban development. First, this study established a parameter index system used to characterize urban development changes. Then, multi-source and multi-scale remote sensing data were employed to monitor the spatiotemporal variations in these indices before and after the operation of the Beijing-Guangzhou HSR within this study area. Finally, four cities that were adjacent to the study area but lacked available HSRs were selected as a control group. Using the difference-in-differences (DID) model, this study quantified the impacts of HSRs on four cities along the Hebei section. The results indicate that the four cities along the Hebei section of the Beijing-Guangzhou HSR saw a rapid expansion in the construction land between 2005 and 2020, with an average annual expansion rate of 2.00%. The HSR construction exerted a significant impact on the direction of urban expansion, with the impact related to the spatial relationship between both. Compared to the four cities in the control group, the operation of the Beijing-Guangzhou HSR has slowed down the expansion rates of urban areas in the four cities along the line.

Keywords urban expansion      land use      night light      high-speed railway (HSR)     
ZTFLH:  TP79  
Issue Date: 03 September 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Boxiong SU
Mingquan WU
Zheng NIU
Fang CHEN
Wenjiang HUANG
Cite this article:   
Boxiong SU,Mingquan WU,Zheng NIU, et al. Analyzing impact of the Beijing-Guangzhou high-speed railway on cities along the Hebei section based on remote sensing monitoring[J]. Remote Sensing for Natural Resources, 2025, 37(4): 194-203.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024161     OR     https://www.gtzyyg.com/EN/Y2025/V37/I4/194
Fig.1  Location of the four cities in the Hebei section of the Beijing-Guangzhou high-speed railway and neighboring comparison cities
分组 所在地级市 城区范围 高速铁路通车时间 所属省份
实验组 保定市 满城区、徐水区、清苑区、莲池区、竞秀区 2012年12月26日 河北省
石家庄市 新华区、长安区、裕华区、桥西区、栾城区、鹿泉区、正定县、藁城区
邢台市 襄都区、任泽区、南和区、信都区
邯郸市 丛台区、肥乡区、邯山区、复兴区
对照组 濮阳市 华龙区、濮阳县 2022年6月20日 河南省
聊城市 东昌府区 2023年12月8日
菏泽市 牡丹区、定陶区 2021年12月26日 山东省
济宁市 任城区 2021年12月26日
Tab.1  Scope of urban administrative districts of the eight cities in the study area
地级市 2005年 2009年 2013年 2017年 2020年
保定 2011*② 2018*
石家庄 2018*
邢台 Landsat 2008*
邯郸 Landsat 2008*
聊城 Landsat Landsat
濮阳 Landsat 2010* 2014*
菏泽 Landsat Landsat
济宁 Landsat 2019*
Tab.2  Satellite imagery used
指标计算基础 指标参数 意义
土地利用数据 用地扩张速率 反映一定时期内各类型土地变化情况
用地扩张强度 反映一段时期内各类型土地平均每年的变化情况
建设用地重心迁
移距离
反映城市建设用地重心迁移情况
夜间灯光数据 城区扩张方向性
指数
反映城区向不同方向扩张的集中程度
Tab.3  Remote sensing indicator system for the impact of high-speed rail opening on urban development
Fig.2  Results of urban area extraction using different statistical values as thresholds
年份 高分卫星影像/景 准确率/% Kappa系数
2005年 2 92.103 0.854
2009年 6 91.296 0.892
2013年 7 97.182 0.964
2017年 8 97.202 0.973
2020年 8 97.940 0.962
Tab.4  Land classification accuracy in the study area
Fig.3  Classification results of land use types in Shijiazhuang urban area
年份 建设用地 林草用地 耕地 水体 裸地
2005年 554.89 228.67 1 497.07 23.34 4.08
2009年 599.21 237.74 1 429.67 25.20 3.61
2013年 609.36 354.15 1 298.96 30.00 2.08
2018年 835.41 258.75 1 164.59 33.21 2.51
2020年 774.83 387.03 1 093.33 36.10 4.44
Tab.5  Changes in the land area of various types in Shijiazhuang urban area(km2)
城市 类型 V/(km2·a-1) R/(%·a-1)
T1 T2 T3 T4 T1 T2 T3 T4
建设用地 11.080 2.536 45.210 -30.291 0.020 0 0.004 2 0.074 2 -0.036 3
林草用地 2.267 29.103 -19.081 64.140 0.009 9 0.122 4 -0.053 9 0.247 9
石家庄 耕地 -16.851 -32.677 -26.875 -35.631 -0.011 3 -0.022 9 -0.020 7 -0.030 6
水体 0.464 1.200 0.642 1.446 0.019 9 0.047 6 0.021 4 0.043 5
裸地 -0.118 -0.383 0.086 0.967 -0.028 9 -0.106 2 0.041 3 0.386 0
建设用地 6.970 18.337 18.428 -5.385 0.016 7 0.040 0 0.037 2 -0.009 2
林草用地 14.282 8.452 -75.213 209.186 0.044 0 0.020 6 -0.176 2 4.117 0
保定 耕地 -21.887 -25.867 -11.311 -33.231 -0.015 0 -0.019 5 -0.008 9 -0.027 3
水体 0.960 -0.854 -1.006 1.501 0.119 8 -0.062 0 -0.083 4 0.213 5
裸地 -0.029 -0.187 0.022 0.496 -0.017 0 -0.122 1 0.018 6 0.391 5
建设用地 6.362 16.189 1.129 5.064 0.022 5 0.053 7 0.003 0 0.013 1
林草用地 71.906 5.923 25.032 4.877 0.075 4 0.005 1 0.020 9 0.003 8
邢台 耕地 -39.563 -22.341 -31.744 -4.909 -0.030 7 -0.019 1 -0.030 0 -0.005 3
水体 1.068 0.694 3.035 -3.139 0.123 9 0.058 7 0.198 4 -0.114 4
裸地 -4.033 -0.240 2.546 -1.815 -0.216 6 -0.036 7 0.478 4 -0.117 0
建设用地 2.534 7.840 7.112 6.661 0.007 4 0.029 5 0.023 3 0.020 0
林草用地 20.297 7.419 8.745 14.973 8.039 9 0.118 2 0.087 6 0.111 0
邯郸 耕地 -24.705 -15.070 -17.215 -22.359 -0.017 8 -0.015 6 -0.019 3 -0.027 2
水体 0.049 0.286 1.140 0.720 0.006 0 0.046 2 0.149 6 0.059 1
裸地 0.209 -0.064 0.017 0.050 0.356 9 -0.059 8 0.023 1 0.061 0
Tab.6  Expansion rate and intensity of urban areas in the four cities along the high-speed railway
Fig.4-1  Expansion of construction land in urban areas of the four cities along the high-speed railway
Fig.4-2  Expansion of construction land in urban areas of the four cities along the high-speed railway
Fig.5  Transfer route of construction land focus in the four cities along the high-speed railway
Fig.6  Distribution of expansion areas in various directions in urban areas of the eight cities in the study area
组别 城市 方向性指数 平均值
实验组 保定 3.91 6.12
石家庄 13.37
邢台 2.64
邯郸 4.54
对照组 聊城 2.70 3.68
菏泽 3.03
济宁 4.18
濮阳 4.80
Tab.7  The directional index of expansion in urban areas of the eight cities in the study area
变量类型 名称 单位 含义
因变量 城区面积 km2 反映城市城区面积
自变量 时间 京广高铁开通前后5个年份
控制变量 GDP 亿元 代表城市经济水平
人口数 代表城市规模
第二产业产值 亿元 弥补夜间灯光无法探测的工业区经济活动
Tab.8  Variable selection of DID model
时间 组别 系数 标准误差 t p
事件发生前 对照组(Control) 0.408
实验组(Treated) 0.571
Diff(T-C) 0.162 0.102 1.586 0.125
事件发生后 对照组(Control) 0.096
实验组(Treated) -0.020
Diff(T-C) -0.116 0.076 -1.515 0.142
Diff(T-C)(未加入控制变量) -0.132 0.073 -1.814 0.080*①
Diff-in-Diff -0.278 0.113 -2.457 0.022**
Tab.9  Regression results of the impact of the opening of the Beijing-Guangzhou high-speed railway on urban areas of the four cities along the Hebei section
[1] 中国城市规划设计研究院. GB/T 50280—98 城市规划基本术语标准[S]. 北京: 国家市场监督管理总局,1998.
[1] China Academy of Urban Planning and Design. GB/T 50280—98 standard for basic terminology of urban planning[S]. Beijing: State Administration for Market Regulation,1998.
[2] Vendemmia B. Big infrastructures effects on local developments:The case of Naples Metropolitan Area[J]. TeMA -Journal of Land Use,Mobility and Environment, 2011, 4(3):87-99.
[3] Ewing R, Handy S. Measuring the unmeasurable:Urban design qualities related to walkability[J]. Journal of Urban Design, 2009, 14(1):65-84.
[4] 覃成林, 杨晴晴. 高速铁路发展与城市生产性服务业集聚[J]. 经济经纬, 2016, 33(3):1-6.
[4] Qin C L, Yang Q Q. Development of high-speed railway and producer services agglomeration[J]. Economic Survey, 2016, 33(3):1-6.
[5] 李廷智, 杨晓梦, 赵星烁, 等. 高速铁路对城市和区域空间发展影响研究综述[J]. 城市发展研究, 2013, 20(2):71-79.
[5] Li T Z, Yang X M, Zhao X S, et al. High-speed rail’s influence on urban and regional spatial development:A review[J]. Urban Development Studies, 2013, 20(2):71-79.
[6] 唐可月. 高速铁路对沿线站点城市经济发展的影响——以哈大高铁和郑西高铁为例[J]. 北京交通大学学报(社会科学版), 2020, 19(4):45-61.
[6] Tang K Y. The influence of high-speed railway on the economic development of station cities along the line:A case study of Harbin-Dalian high speed railway and Zhengzhou-Xi’an high speed railway[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2020, 19(4):45-61.
[7] 于策, 李远富, 林芳, 等. 基于GIS的津保铁路对沿线城市可达性影响分析[J]. 铁道运输与经济, 2017, 39(5):18-22.
[7] Yu C, Li Y F, Lin F, et al. Analysis on influence of Tianjin-Bao-ding railway on accessibility of adjacent cities based on GIS[J]. Railway Transport and Economy, 2017, 39(5):18-22.
[8] 张喆, 王晓梦, 姜雨皓, 等. 中老泰铁路建设对云南省及沿线国家空间联系格局的影响——基于城市流网络的分析[J]. 世界地理研究, 2019, 28(3):43-53.
[8] Zhang Z, Wang X M, Jiang Y H, et al. The influence of China-Laos-Thailand railway construction on spatial relation between cities along the route:Based on city flow network analysis[J]. World Regional Studies, 2019, 28(3):43-53.
[9] Diao M. Does growth follow the rail? The potential impact of high-speed rail on the economic geography of China[J]. Transportation Research Part A:Policy and Practice, 2018, 113:279-290.
[10] Huang Y, Zong H. Has high-speed railway promoted spatial equity at different levels? A case study of inland mountainous area of China[J]. Cities, 2021, 110:103076.
[11] Shao Z G, Zhang L, Han C T, et al. Measurement and prediction of urban land traffic accessibility and economic contact based on GIS:A case study of land transportation in Shandong Province,China[J]. International Journal of Environmental Research and Public Health, 2022, 19(22):14867.
[12] Ye C, Zheng Y H, Lin S L, et al. The impact of high-speed railway opening on regional economic growth:The case of the Wuhan-Guangzhou high-speed railway line[J]. Sustainability, 2022, 14(18):11390.
[13] Puga D. Agglomeration and cross-border infrastructure[J]. EIB Papers, 2008, 13(2):102-124.
[14] Gutiérrez J, González R, Gómez G. The European high-speed train network:Predicted effects on accessibility patterns[J]. Journal of Transport Geography, 1996, 4(4):227-238.
[15] 戴学珍, 徐敏, 李杰. 京沪高速铁路对沿线城市效率和空间公平的影响[J]. 经济地理, 2016, 36(3):72-77,108.
[15] Dai X Z, Xu M, Li J. The efficiency and spatial equity impacts of Beijing-Shanghai high-speed rail on neighboring cities[J]. Economic Geography, 2016, 36(3):72-77,108.
[16] 蒋华雄, 蔡宏钰, 孟晓晨. 高速铁路对中国城市产业结构的影响研究[J]. 人文地理, 2017, 32(5):132-138.
[16] Jiang H X, Cai H Y, Meng X C. The structural impact of high speed rail upon urban industries in China[J]. Human Geography, 2017, 32(5):132-138.
[17] 李响, 刘心怡, 李卫东, 等. 京沪高铁开通对房地产就业的影响——基于DID模型[J]. 综合运输, 2022, 44(3):24-28,54.
[17] Li X, Liu X Y, Li W D, et al. Influence of Beijing-Shanghai high-speed railway opening on real estate employment:Based on DID model[J]. China Transportation Review, 2022, 44(3):24-28,54.
[18] 程婉静, 莫东序, 梁心悦, 等. 中国神黄铁路运煤专线开通对地区产业结构的影响——基于DID模型的实证研究[J]. 煤炭经济研究, 2020, 40(1):4-10.
[18] Cheng W J, Mo D X, Liang X Y, et al. Impact of China Shenhuang railway dedicated coal line on regional industrial structure:Empirical research based on DID model[J]. Coal Economic Research, 2020, 40(1):4-10.
[19] 黄振宇, 吴立春. 京沪高铁对沿线城市经济的影响——基于空间经济学理论的实证分析[J]. 宏观经济研究, 2020(2):165-175.
[19] Huang Z Y, Wu L C. Impact of Beijing-Shanghai high-speed railway on the economy of cities along the route:An empirical analysis based on the theory of space economics[J]. Macroeconomics, 2020(2):165-175.
[20] 吴嘉贤, 刘修岩. 高铁开通与中国农村减贫——来自遥感数据的证据[J]. 世界经济文汇, 2022(1):1-17.
[20] Wu J X, Liu X Y. High-speed railways and rural poverty:Evidence from remote sensing data[J]. World Economic Papers, 2022(1):1-17.
[21] Okamoto C, Sato Y. Impacts of high-speed rail construction on urban agglomerations:Evidence from Kyushu in Japan[J]. Journal of Asian Economics Journal, 2021, 76:101364.
[22] 张永庆, 刘聪. 高铁建设对江苏沿线区域发展影响研究——基于双重差分模型的估计[J]. 物流科技, 2021, 44(1):85-88.
[22] Zhang Y Q, Liu C. Study on the influence of high-speed railway construction on the regional development along the line of Jiangsu Province:Estimation based on double difference model[J]. Logistics Sci-Tech, 2021, 44(1):85-88.
[23] Jin M J, Lin K C, Shi W M, et al. Impacts of high-speed railways on economic growth and disparity in China[J]. Transportation Research Part A:Policy and Practice, 2020, 138:158-171.
[24] 刘长龙, 常军, 刘娜, 等. 高速铁路的建设对沿线区域土地利用变化影响研究——以京沪高铁山东段为例[J]. 西安理工大学学报, 2020, 36(3):367-375,423.
[24] Liu C L, Chang J, Liu N, et al. Study of the effect of high-speed railway construction on the changes of surrounding area land use:Based the high speed railway of Beijing to Shanghai in Shandong Province[J]. Journal of Xi’an University of Technology, 2020, 36(3):367-375,423.
[25] 徐盼, 张晓祥, 晏王波, 等. 城市交通干线对盐城城市发展影响的空间分析[J]. 地球信息科学学报, 2013, 15(1):29-37.
[25] Xu P, Zhang X X, Yan W B, et al. Urban transportation infrastructure and its effects on regional development in Yancheng:A spatial analysis perspective[J]. Journal of Geo-Information Science, 2013, 15(1):29-37.
[26] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
[27] 仲晓雅, 闫庆武, 李桂娥. 中国长时间序列夜间灯光数据集的研发(2000—2020)[J]. 全球变化数据学报(中英文), 2022, 6(3):416-424,593-601.
[27] Zhong X Y, Yan Q W, Li G E. Development of time series of nighttime light dataset of China(2000—2020)[J]. Journal of Global Change Data and Discovery, 2022, 6(3):416-424,593-601.
[28] Yu C H, Zhou Q, Li J L, et al. Foundation model drives weakly incremental learning for semantic segmentation[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver,BC,Canada:IEEE, 2023: 23685-23694.
[29] 邓刘洋, 沈占锋, 柯映明. 城市建成区遥感影像边界提取与扩张分析[J]. 地球信息科学学报, 2018, 20(7):996-1003.
[29] Deng L Y, Shen Z F, Ke Y M. Built-up area extraction and urban expansion analysis based on remote sensing images[J]. Journal of Geo-Information Science, 2018, 20(7):996-1003.
[30] 陈美招, 张炜康, 郑荣宝. 高铁开通促进了沿线城镇经济活动吗——来自双源夜间灯光证据[J]. 中国地质大学学报(社会科学版), 2021, 21(6):119-133.
[30] Chen M Z, Zhang W K, Zheng R B. Does high speed railway promote the economic activities of cities and towns along the line:Evidence from dual source night lighting[J]. Journal of China University of Geosciences (Social Sciences Edition), 2021, 21(6):119-133.
[1] LIU Hao, DU Shouhang, XING Jianghe, LI Jun, GAO Tianlin, YIN Chenghong. Land use classification of open-pit mining areas based on multi-source remote sensing time series features and convolutional neural networks[J]. Remote Sensing for Natural Resources, 2025, 37(4): 99-107.
[2] MOU Fengyun, ZHU Shirou, ZUO Lijun. Spatiotemporal evolution analysis of urban built-up areas based on impervious surface and nighttime light[J]. Remote Sensing for Natural Resources, 2025, 37(4): 108-117.
[3] XING Xiaotian, WANG Qi, ZHAO Jiajun, LIU Pudong, ZHANG Jingyuan. Investigating land use and carbon storage changes in Jinan metropolitan circle based on the InVEST-PLUS coupled model[J]. Remote Sensing for Natural Resources, 2025, 37(4): 118-130.
[4] MA Maonan, CHANG Liang, YU Guoqiang, ZHOU Jianwei, HAN Haihui, ZHANG Qunhui, CHEN Xiaoyan, DU Chao. Spatiotemporal changes in land use and their driving factors in the Golmud River basin from 1980 to 2020[J]. Remote Sensing for Natural Resources, 2025, 37(4): 184-193.
[5] XIA Siying, LI Jingzhi, ZHENG Yujia. Changes in land-use-related carbon emissions in Xiangxi and their prediction[J]. Remote Sensing for Natural Resources, 2025, 37(4): 220-231.
[6] ZHENG Jiaxin, PEI Xiaolong, SONG Dongyang, TIAN Rui, ZHAO Zhongqiu, BAI Hang. Identification of ecologic zones based on ecosystem service value and ecological risk index from a perspective of spatiotemporal dynamics: A case study of Qinhuangdao City, Hebei Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 233-244.
[7] LIN Xinyuan, CHENG Yangjian, XIE Wei, LI Chuanqing, NIE Wen. Exploring the ecological effects of land use changes in mining areas under different mining modes based on the Google Earth Engine[J]. Remote Sensing for Natural Resources, 2025, 37(3): 54-64.
[8] ZHANG Chengye, LI Mengyuan, XING Jianghe, QIU Yuhang. Comparative study of popular remote sensing teaching and research software for land use classification in a complex mine scene[J]. Remote Sensing for Natural Resources, 2025, 37(3): 9-16.
[9] CHAI Xinyu, WU Xianwen, CHEN Xiaohui, WANG Yu, ZHAO Xingtao. Multi-scenario simulation and prediction of land use in the Pearl River Delta urban agglomeration using the coupled Markov-FLUS model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 140-147.
[10] LI Conghui, MA Caihong, AN Siwen, YANG Hang. Simulating the response of ecosystem services to the changes in production-living-ecological land use under different scenarios in the ecological economic belt along the Yellow River in Ningxia Hui Autonomous Region[J]. Remote Sensing for Natural Resources, 2025, 37(2): 155-163.
[11] LIU Yiyao, WU Taixia, WANG Shudong, JU Maosen. Exploring the performance of riparian zones in reducing non-point source pollution by coupling remote sensing with the SWAT model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 256-264.
[12] WANG Jianping, CHEN Meiqiu. Identification of land use conflicts and zoning regulation in Nanchang City, China[J]. Remote Sensing for Natural Resources, 2025, 37(1): 113-121.
[13] LI Ruikai, ZHAO Zongze, TANG Xiaojie, ZHANG Jiayun, WANG Guan, ZHANG Lijuan. Spatiotemporal analysis of economy in China’s primary cities affected by the COVID-19 pandemic based on remote sensing of night light[J]. Remote Sensing for Natural Resources, 2025, 37(1): 243-251.
[14] NIU Zhensheng, YANG Xin, CHEN Chao, LIAO Xiang, ZHANG Xiaoxuan. Analysis of changes in the economic development characteristics of the Chengdu-Chongqing urban agglomeration using remote sensing data on nighttime light[J]. Remote Sensing for Natural Resources, 2024, 36(4): 272-281.
[15] ZHAO Qiang, WANG Tianjiu, WANG Tao, CHENG Sudan. InVEST model-based analysis of spatiotemporal evolution characteristics of habitat quality in the ecological green integrated demonstration area, Yangtze River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 187-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech